Linden Scripting Language Guide

Aaron Brashears
Andrew Meadows
Cory Ondrejka
Doug Soo

Linden Scripting Language Guide
by Aaron Brashears

by Andrew Meadows
by Cory Ondrejka
by Doug Soo

Copyright © 2003 Linden Lab

Linden Lab® and Second Life® are registered trademarks of Linden Research, Inc.

Table of Contents

O 1) (oY [0 T3 1o I 1
A T 1] T] ¢= 1 (T P 2
N I o (=Y | Fo T V7= = SRRSOt 2
2.1.1. Creating the SCIDL.o ettt st a e s e e e e ae e e s 2

2.0.2. DEAUIE STALE......ee ittt et e et et e e st e s ae e et e e sbeeeaeeeabeesbeesbeesabeesbeenseesanes 2

2,03, FUNCLIONS. ...ttt ettt sttt et e b e et eeeae e sat e e beesbeesaseenbeesseesaeesnbeesseasseesabeesbeanseesanes 3

N I o1 o] a T AV = o | PO SO RSRRRP 3

P T T I V1 LU OSSR 4

2.2.USING The BUIIE-IN EQITOL.......c.iiiiiiieeeeeeeen ettt e sttt b e s sen 4

ARG T U L [To I AN L =T g g F= LA =T T 1] (o] 4

T = 1 [SRRSO 5
G 20 I O 41 1T 1SS 5

I N €11 0 0= (o @ 01T (o] g TSR 6

G 0 I X=X~ o | T =1 o | R 6

3.2.2. Binary ArithmetiC OPEIratorS.......cccoviieiireieereeesesesteste et s se st s sae e sre e e 6

G070 T = To o[- Lo I @] 1T = o £~ 7

3.2.4. BItWISE OPEIALOIS.....cuecuertirtereirieieerestestesteseeseesestestessessessesesssssessessessensesessesssssessensesessessessensenes 7

G T T 17/ o =SS 8

G 20 B Y/ oL 0] 0 1V=T 7T Yo TSRS 9

T o €1 1] o =1 I LU o 1 [T 1= 10

RS €1 10] o F= Y = T =1 o1 [T 10

IS o To= 1RV T4 F= 1 o] LT 11

o 101V LV @ T o (o | TP 12
T oo g To 11 0T 4T LIRS £= (=T g =] 1 XTSRRI 12

o o To] o @ 0] 1511 £ U o4 K3 USSP 13
0t (o] g (oo o TSR 13

4.2.2. AO-WHIIE TOOP..... vttt ettt sa bt e bbb e ere e 13

G T Y 11 L= (0T o TSR 14

G TN 1 101 o1 JO TSP U U USRS 14

S 1= 1 (= O T o To = OO 15

LTS 7= 1 (1 SRS R TSR OPRROt 17
LT 1 = LC T =T 1Y/ 17

LT 1 = UL T =) T 18

5.3. States VS. Global VariabIEs...........ooii e 19

B. IMIAIEN ...ttt bbb e bt et e ebe et abeebe e tebeehe e beeheetesheeaaebeebeenreeteenrenreeaean 21
6.1. Tables Of FUNCHONS........cciiiii i b 21

A0S 1 o TP 22
7.1, TADIES Of FUNCHONS......ccoiitiiiecte ettt ettt sttt et et sreetesbeeas e beebe e s e sbeenaesbesaeenbesbeenseeseeneessesanas 22

S T 1 1 23
8.1. Tables Of FUNCHONS........ccoiii s 23

L T OT0 100 g 10 T To7=11[0] o FOu RO 24
9.1, TADIES Of FUNCLIOMNS.......cccieitieiee ettt ettt ste e et e s b e et e et e e s beeeaeeenteebessseesaseenbessseesneeenres 24

QTR 101V =T o] (o Y2 TSRS TP U TSRS 25
10.1. TAbIES Of FUNCHONS......ocotieiee ettt ettt et et e e et e et e e beesaeeebessabesseesbessaseeseenbeesasesseeseeses 25

Y=Y 1Tod (=TT 26

L1 L. OVBIVIEBW. ...ttt ettt ettt et e e e st et et e e be e st e sbeeaeesbesheentesbeeaeaseeaeessesaeensestasseensesteensesresnnestesrnans 26
L0, 2. WWAININGS. ettt ettt ettt eea et h e b e bt e bt b e e e b e s e A eh e e b e bt e e bt b e bt e bt e b et e st b e st e enn 26
R T D 1= 1) T 1TSS 27
11.4. Setting the VENICIE TYPE....c i 28
11.5. Linear and Angular DeflECHION.ooui it 28
11.6. MOVING the VENICIE........oeee e bbb et sbe e 29
11.7. SteeriNg the VENICIE ..ot sbe e 30
S T I L= Y =Y o= LN = Lo (] SRS 31
IR TR == o114 o TSRS 31
11.20. FriCtion TIMESCAIES. ..ottt ettt s b e bt b e bbb e b et aesbennas 32
0t O =T 1) V7= U [0n Y PRSP TSRPR 33
O B o [0 YT PSPPSR PRSP PRORPRORI 33
11.13. REFEIENCE FIAME....ccuiiiieeeeieete ettt ettt b e s bbbt b e be b e et e e e e e nesbennas 34
N g To =T o U] o = V2 U] e 10T SRS 35
AL TTADS . bbb e b e b e bt E et R et A e Rt b be s e beneebeneebe e ere e 35
AL TTACOS. ..otttk e b b bt E Rt R ARt E ekt e b e e b et R e Rt et e Rt b bene ke st beneebe e eneneas 35
A.3. IADATOLANAPASSLISE. ...ttt st sttt se b st se et st ne b 35
y N B VX [TU Y 6o 10 g o AV] 0 4= 35
F ST V[To Y L g1Y7=T) (o] I (o] o 35
ALB. ITANGIEBEIWEERI.ccviiteee ettt sttt b et b bt b e et et e s bt et 36
AT TAPPIYIMPDUISE. ...ttt s b e sk s b et b et b et st b e sb bt se et e seebeseebe e eteneas 36
A.8. lIAPPIYROLALIONAIMPUISE......cveirieiieeteete et s b e s b e 36
AL TTASIN ettt et s e et b e ea e e beeheete bt et e ebeeheeabenbeeaeeteeae et sheeneeteeteenrenteenes 36
ALLD. TALANZ. ..ttt et e s te s e te st e e ae et e e beeaeeeheeaeeabeehe e bebeeae e beeaeentesheentebeeteenrenreenes 36
ALLL HARACHTOAVALAL........ccuiitieee ettt et sttt e e s be e e s be s e e sbesbeeabesbeeaeesesaeeneesbesaeetesteententeenes 37
AL2. TAVALAIONSIETTAIGEL. ...ttt sttt b et st b e b e b et b bbbt se et e seebeseebe e enenea 37
ALLS. HTAXESZ2ROL. ...ttt ettt ettt te st e et et e e beeaeesbesaeesbesbeenbeebeeae e teeaeentesheeneeteereenteareenes 37
A LA NAXISANGIEZROT. ..ottt b e e b e b et b e b et b bbbt et se b e e bt enenea 37
ALLS. IBrEAKAIILINKS.....vi vttt ettt sttt st sr e s e e s tesbeeabe st e eaeetesaeeneesaesneentesreentenreenes 37
ALLB. IBrEAKLINK ...ttt ettt sttt e st e s ae e s re s be et et e eae e tesaeeneesaeeneeteereenrenreenes 38
ALLT . TICSV 2L ittt sttt sttt sttt et st e stese st esesaetese et e se et e e e be e s besestesessesesaeteseetenenteenteneas 38
NN S 1 =T TSRS 38
NNt e R 11 T U o TSSO 38
y N O | (@0 13 o] i1 (=T S 38
N I | (@01 RS To] o 1S 01U [AU 39
F N | [OFo]| RS To] IS o L= ST PRTRTTRPUT 39
N T | o TSRS 39
A28, TICTEALELINK. ...ttt b b st h bt bt s h e b e b et et e bt e b e bese e e e e eneeneeaeebenan 39
AL25. IIDEIEIESUDLISE.ctiieieiiteirieesiete ettt sttt ettt st st e et et be st seeseseebeseebesenbesenbeentenens 39
A.26. IDEIEIESUBSIIING ... ecii ettt eae et saeeaesre e e e e ereenrenreenes 40
A.27. [IDELACNHFTOMAVALAL.......cci ittt ettt e et s e ebe b b et e b e e et e bt et e s bese e s e e eneeneeaesrennen 40
E NS T 1 D= =Tt =T (] T o ST STRSTPTRIN 40
F A T 1= =Tod (=T | =) R 40
A.30. IDEteCtEALINKNUMDEL........citiiiiieiereetereete sttt sttt s b e sttt esaenea 41
E T I 113 1= =Tt (=T |\ T = TSRS PRSP 41
A 32, IDELECLEAOWNEL......c.eiteuieieierieiereete sttt sttt st et st st et et st e st st e besbebeseebeseebeneebe e naenens 41
E NG I 113 1= =Tt (=T | o = OSSR TTSTTPSPRRTTRRN 41
YN 7 [T =Tox (=0 | o | OO ORSTRPOPR 41
E N T 1B = =T ot (=T o Y o =TSSR 41
AL36. IIDELECIEAVEL ...ttt ettt et be s s be s be et e beebe e besaeeneesbesaaenbesbeensenreenns 42

A LT IIDIAIOG. -ttt ettt bbb e b ek e b e bt h et h Rt b bt e b e b e b e ne e 42
ALB8. IIDIE ..ttt ettt ettt a et e R AR e R e aeebe e Ee e e beneeteReeteResaetenaetereeteneereneas 42
A.39. IIDUMPLIST2ZSTING. ...ttt ettt s b e b e b et b et sb ekt se b se b e seebe e ene e 43
A0, IIEAGEOTWWOIIG. ... vttt sttt st b et b et b et b bbbt et e e b e seeb et b 43
AL IEJECIFTOMLANG. ...c.eiitiiiteieieest ettt b e bt e b et b et b et b st b bt saebeseebeseere e enenea 43
F N 1| o= T TSRS 43
y N A 11T 1=T p2d o | A SRS 43
A4, TTFADS. ...ttt ettt e R e R et e e R e e R et b e Re et e Re et eRenaebeneereneete e ereneas 44
TR | o o SRS 44
TR |1 = U T OSSR 44
N |1 72 o] o = SRS 44
ALAB. IIGEIAMACKHEM.o bbbttt be b b e e e e eae b e 44
F N L (=Y 720 = 14 1) oS 44
F NS O [T /a0 =T A = S 45
RN A 11T 72N o = S 45
A2, [IGEIANARESEITIME. ...ttt sttt h et bbbt et be et e be e e s e e e e e aeeaesbeeras 45
A3 IGEIANIMALION.....e.eieeeieeeee ettt b b e e s bbbt b et e e et e bt et e s bese e s e e e e e neeneerennen 45
A5, IGEICENIEIOMMASS.....vieiveieieiirieie ettt sttt st st se et st et et be st saesesbeseseebeseebenesbenenteneas 45
E N | (7= (@ o] o] oSSR 46
ALSB. IIGEIDALE.......cuieetieeteieteete ettt ettt bbb ek e b et b et bRt E R bR e ke e be e be e re e 46
F W 1T {1 =T (o) 46
ALB8. IIGEBIFOICE. ...ttt e b e et st b ettt b et bRt b e ek e b et e ne e 46
YN B [T =Y d {1V 1= 0 o] o 46
A.B0. IGEUNVENTOINYKEY....c.citiiiieie ettt ettt bbb se b et e seebe ettt 47
A.BL. IGEUINVENTOINYNAIME. ...ttt st et sttt b bbb se et e seebeseebe e enenens 47
A.B2. IGEINVENTONYNUMDEL. ...ttt ettt b e bbb s b e b sae e 47
ALB3. IGEIKEY ...ttt bbb b bbbt b et b Rt e bt st be e bRt b 47
A.BA. IIGEILANUOWNEIAL ...ttt ettt st e e e te et e s ae e e e sbesbeeabe st e eaeetesaeensesaeensestesteensenseenes a7
ALBS. IIGEILINKKEY ... vttt ettt b e s b e st b et b et b et b bbbt et e se b e st eb et ebenea 48
ALBB. IGEILINKINGIME.ottt st sttt s te e e s be s e e s besbeeabesbeeae e besaeeneesaesaeebesbeenbenreenes 48
ALB7 . IIGEILINKNUMDEE......ccii ettt sttt e re e e e s tesbe et et e eae e sesaeeseesaeeneetesteentenreenns 48
ALB8. IGEILISTENTIYTYPE. ...ttt ettt bbbt et e b e b e ene e 48
A8, IGEILISILENGN ...ttt b e bbb 48
A.T0. IGEILOCAIPOS........e ottt et sttt et e s be st e s te s beeabe st e eae e besaeeneesaeeneentenreensenreenns 49
y N [T Y { oY= 11 o | SRS 49
F N (Y 4N L =g =V SR 49
F N B (€Y 4N [0 (=T or= o | T T S 49
YN [T Y N [T g o T O] o =SSR 50
y N ([T (@] o T=Tox 1 =Ty o= TSRS 50
F N ST 1 [C1=1 (@] 43 TTo = TS PO PSR RTTR PP 50
E N 111 (@ T o 1= ST U PPN 50
F N S T ([T (@ Y =T o = 50
AT, [IGEIPEIMISSIONS. ...ttt ettt b bttt s bbbt b e b e e et e bt eb e s bese e e e s eneeneeaesrenas 50
A.80. [IGEIPEIMISSIONSKEY......ecieeiieiieiesteetese ettt e e re s e e s te st eete st e eseeeesaeeeesaeeneentenseensenreenes 51
ALBLL IIGEIPOS....c ettt b b ek R R Rt bR e Rt b bR e et ae b ren 51
F R Y 1 [T { =T o]] RS 51
F R T T 1= dmd=To o] 0] N F= U= RS 51
YNV S | (e =Y { md=To o] I 41T 1= LT} o S 52
ALBS. IGEIROL ...ttt ettt b e et et b et bRt b e e b ek e bt et eeneneas 52
ALBB. IGEBEISCAIE.......e ettt bbbt b et b e bbb e b et e ae e 52
F R A [T Tt g o] 1N = 0 = 52
A.B8. IIGELSIANPAIAMELEAL........ccee ittt ettt st te st et e et e ebe e besaeeneesbesnsenbeebeensenreenes 52

A8, G EESCHIPISTALE.....cueeeteiiteeete ettt e b e b et b et b bbbt s et e b e ebe e ene e 53
AL90. IIGEBEISTALUS. ... ecueeticeieie ettt ettt et e st e st et e st e et e besbeeaeesbesaeesbesaeenbesbeeaeesesaeeneesaeeneesbesreenbentennns 53
ALGL. IGEISUDSIIINGe ettt ettt b ek s b e bt b et st e st b bt seebeseebeseebe e enenea 53
AL92. [IGELSUNDIFECHION.c.ei ittt ettt st e e e e e e be e e e s resaeebesbeeas e besaeeeesaeeneesbeereententeenns 53
F N I [T (U= SRS 53
YN [T Y A oY U (=T i £T= SRS 54
YN T [T Lo e U =] o) SRS 54
AL9B. [IGEITEXIUIESCAIR......c.ei ettt e e e s s re s e et e st e eae et e saeeeesaeeneestesreentenreenes 54
F N A 1Y T =TS 54
AL98. [IGEITIMEOTDAY. ... cueeueeierieeterie ettt sttt et b e e se et s e ae e bt bt be st e e et ebe et e sbeseeseenseneeneenesbenbas 54
F N 1S T |11 o] (o [L= SO SRU 55
ALLO0. HIGEIVEL....ceeeieeiete ettt sttt st et et et e e be ettt eRe st be et e e be e te e nne e 55
ALLOL. HGEIWAIICIOCK. ...ttt sttt be e e b e e et eaesbe e 55
F N 02 | (€Y =T 11V 7=T g (o 7S 55
A.L03. IGIVEINVENTOIYLISL.....c.eeee it seeciesteete ettt e e s ae e s re s e e te st e e ae e tesaeenaesreenaessesneensenreenes 55
N 0 [TV = 1 o =Y 56
ALLOS. HIGFOUNM. ...ttt b bt s e e s h e ae bt b e b e et e bt eb e b e s e e s e e e e e neenenrennas 56
F N L0 G | (] o101 aTo (@] a1 (o U oo TSRS 56
A 107, IGIOUNANOIMAL ...ttt st sttt st se st ebeseebeseebeseebeneeteneas 56
N K0 1< T 1 o 10T o | =T 1= RS 57
F N K0 1o T 17 o 10T o 1] To] o =TS 57
N O T {1 T =T 3 1T 57
N I O {1 1S3 2= U 11 =TT Vo = R 57
ALLL2. TTKEYZ2NBIMIE.......iiitiieieieieeriei sttt sttt ettt s et b e s e b s e ke st e b e e b et et e st seebesbebeseebeseebeneebe e enenen 57
ALLLS. HILISI2CS V..t et et sttt sttt e be e e s be s et e sbesbeeabesbeeae e besaeentesbeentenbesbeenbenteeans 58
ALLLA, ILIST2FIOAL. ... ei ittt et st st et et e s be e e e sbesaeesbesbeenbesbeeaeestesaeensesaeensebesbeensenreenes 58
E N ST | I T3 w2d [(=T 1= OO TSPPRRTPPRRN 58
ALLLE. TILISE2ZKBY. ...ttt sttt sttt bbbt b e s e bt ek s e b et b et s b et st e bt sbebese ek e se b e neeb et ene e 58
ALLLT . ILIST2LIST .ottt ettt st et e st e e b et e e beeaeesbesaeesbesbeenbesbeeaeessesaeensesaeeneenbesteenbenreenes 58
N S |1 w2 I 1) 1o [=To [OOSR 59
ALLLO. HILISI2ROL. ...ttt ettt st et e st e et et e s beeaeesaeeaeesbesbeenbebeeaeesesaeensesaeeneetestaensenreeans 59
ALL20. TILIST2STIING .ttt ettt b e se s e bt eb e ek se b et b et b e st s b e bt sbebeseebeneebeneebe e eneneas 59
N T |1 w2 = Tox (o (O SRS 59
ALL22, TILISTFINALIST....cviveteieteieteesiee ettt ettt st sa et seeteseebe e st e e s besestesesaesesaeteseebesensenensanens 59
N 2 R |11 g FT=T 1 1 SRS 60
N | 1S = Vg o (o0 =S 60
E N I ST |1 15T) TSRS 60
N T |1 1= (= o S 60
N A A |11 =T [0 £ o SRR 60
ALL28. [ILISLENREIMOVE. ...ttt b b e se et a e bbb e b e et e bt b e s bese e e e e eneesenaesbenas 61
ALL29. TILOOKAL ...ttt sttt ettt s et b e s e et e s e et e se e b et et e st e be st st esesbebeseebesenbenente e etenens 61
N 10 R 11 T 15T T Lo 61
N B I 1o T 11010 T T 1LY T = 61
N 2 | 1o To] o ST T T RS = 1Y 62
N 2 R |11V = 1] 4] 01 [1 62
ALLBA. TIMBKEFITE. ...ttt sttt sttt st e st e et et st e st st ebesaebeseebesenbeneebeneeteneas 62
A.L35. [IMBKEFOUNTAIN......ccitiiiieieieriee ettt sttt ettt a b et ese et e seebe e sbe e ntenens 62
ALL36. IIMBKESIMOKE......ccviiieieieie ettt sttt e bbb seebese et e nesbe e etenens 63
A.L37. [IMESSAGELINKEM.......oceeiee et e e e ae et e tesee e e e enennennenrenean 63
A.L38. IMINEVENIDEIAY......ccueieeeietesesierieeeeees s e et se e s esesaeseesteae e eneesesteseeseeneenaenennennesrensen 63
N I 1< T {11V o T [Y = T o 63
AL LA0. IIMOVETOTAIGEL....cueeeeeieteeeiei ettt ettt sttt sk se et e e b e st st e bt seebeseebeseebeneebe e ntenea 63

Vi

ALLAL IO SEITEXIUIE ... e v ettt cee ettt et st st e et e s be e e e s be s e e sbesaeesbesbeeasebesaeensesaeensebesteenbenteenns 64
A LA2. TTOVEIMYLANG.coiiitiiiteieete ettt e b e s b et b et b et b bbbt e ebese b e seebe e enenea 64
A4S TIPArSESIINGZ2LIST.....c.eeieiiieeireeiere ettt b e bbbttt b bt et et e ebe st ene e 64
A LAA, IPAITICIESYSIEIML ...ttt ettt b et b et b et b bbbt se et e seebeseeb et erenea 64
y N T || == T3] @] 115 o g PR 65
ALLAB. [IPASSTOUCNES.eieeieeeie ettt sttt st s e e e s e st et s be b e be st e e e beebesbesee st enseneeneeaesreneas 65
NN 1 = Fo Y Yo U g o OO 65
ALLA8. [IPIAYSOUNASIAVE. ..ottt et s b e b b se et be et e be s e e e e s e e e e eneebenbas 65
ALLAD. TIPOINTAL.....teuiitetireete ettt te sttt se et e st e te st s be e s besesaesesseseseeteseebeseebeseebesestesesbesesaebesenbesentenensanens 66
ALLS0. TP Ottt sttt sttt st se et st e st et et e be e s tesesaesesaese s e et e se e b e e e b et eR e Rt et eResaeseneebeneetenenteneeneneas 66
y N N I 11 (=TT = To 1S o U T SRS 66
ALL52. IIPUSNODJECE.....iieteieteieteisie ettt sttt sttt st s e et et e seebe et e e s be st s besesbebesaebeseebesenbenenteneas 66
ALL53. [IREIECASECONIIOIS..... ettt se bbbt b b et b et esbe e e se e e neeaeeaesbenras 67
YN RV |12 =T 0 o) (=] Mo Y= Lo 1o] o) S 67
F N T |1 =T 0 oY =T V=T (o Y 67
A.156. IREMOVEVENICIEFIAQS.....ccueieee et e e sr e et e reenes 67
A.157. IREQUESIAGENTIDALA........ciuieeeeiesteeiiste et ste s ee e e e e see e e e s te s e esae s b e ese e aeeseeaesreeneensenseensenseenes 67
A.158. [IREQUESLINVENTOIYDALA.......cceiveeeueeiiie st cte ettt sttt sa e e se st e saesresteaeneeneenesrenras 68
A.159. [IREQUESTPEIMISSIONS......cueiteiiesieeetisisestestestese e e e e s testesaesaes s sessesresteste e e e esestesteseesaenseneesennearenses 68
N I {1 =TT 6o) RS 68
N {1 =TT (@11 =T Tt o) RS 68
ALLB2. IIRESEITIME. ...ttt ettt sttt ettt b e se bt s ek e s e b e e b et st e Rt sbebesbebeseebeseebeneebe e nteneas 68
N TC T {1 T= .4 @ o=t 69
ALLBA. TIROT2ANGIE.... ettt s b e sk s b e et b et b e sttt seebeseebeneebe e etenea 69
ALLBS. IIROE2AXIS....uecueetictieete ettt st et s e e te et e e te s e e steste e tesbesbe e beebeeasessesaeestesbeeabesbeeaeesesaeensesbeensenbesteensenrennns 69
ALLBB. IIROL2EUIEN.......eicticteeee ettt ettt ettt s e et st e et et e e beeaeesbe s e e sbesbeenbesbeeaeetesaeensesbesnsesbesteentenreenes 69
ALLBT. IIROI2FWA.....c.eeieceeee ettt et sttt sttt e e be e s be s e e s besbeeabe st e eaeetesaeensesaeensenbesraensenreenns 69
ALLBB. IIROIZLET. ...ttt et sttt e b e e be e e e sbe st e sbesbeesbesbeeaeetesaeensesaeeneestesreensenreenes 70
ALLB9. TTROTZ2UP.....eceieetieeteeete ettt ettt sttt b et b e e bt e bt e ke se b et b et e b e st s b e bt sbeb e se ek e se et e neeb et enenea 70
ALLT70. [IROIBEIWEEIL......ceeeee ettt ettt ettt sttt s b et e e s beeaeesbesaeesbesbeeabesbeeaeesesaeeneeshesneentesteentenreenes 70
ALLT L IIROILOOKAL ...ttt et sttt et e e e be e e e sbesaeesbesaeeabesbeeaeesesaeensesaeensetestaensenseenns 70
ALLT 2. TIROTTAITEL ..ottt ettt b e b e s e bt s e b e se b et b et e b e st s b e bt sbebese et e neebeneeb et enenea 70
A.L173. IIROITAIGEIREMOVE.ciiiieiieeieeet ettt sttt b bbbt et e b e b e e enenea 71
ALLTA, IIROTAIETEXIUIE.eeii ettt ettt et st e st e et e e s beeaeesresaeesbesbeessesteeaeessesaeensesaeensentesteensenseenes 71
N A ST 11 Lo 10 o OSSR 71
F N ST S T= T g 1= T (01U o T TP 71
N | ST Y TSRS 71
E N A S ST 1[0 =L =SS 72
ALLT9. [ISCIIPIDANGEL. ... ittt ettt b e e e et s e a e s bt sb e st e b e e e e ebeebesbesee e enseneeneeaesbebas 72
F N ST ST 0 1S) SO U PSP 72
ALLBL. [ISENSOIREMIOVE. ...ttt ettt sttt et a e bt e e et s e ea e bt sb e b e b e e e st e bt et e sbesee s e s eneeseeaesreran 72
F N | S T=T g LYo T =T 1= | S 72
F N RS I | 15T /AN o] o - VOSSPSR 73
F N7 | ST 1 = T80 Y7= Vg xR 73
A.185. [ISEtCAMEIAATOMSEL......cctiitieee ettt et b b b e e e et sae b nan 73
A.186. [ISEtCAMEIAEYEOMSEL......eci et sttt ae et ae s e et e e eneeseenesrenean 73
E N S | 1S T= (0] o ST STPTSTTPRTPTRRN 74
F NS T ST 47T T Vo T 74
ALLBO. IISEEFOICE. ...ttt ettt sttt e st et b e et e st st bese bt se et e neebe e be e enenea 74
y N R LI ST o oY AN o o] o [0 = 74
N R ST o =T =T |) 74
ALLO2. ISELLINKCOIOL. ...ttt ettt sttt et e et e s ae s e e s besbe e st e beeaeebesaeensesbesneenbesbeensenreenns 75

Vi

A.193.
A.194.
A.195.
A.196.
A.197.
A.198.
A.199.
A.200.
A.201.
A.202.
A.203.
A.204.
A.205.
A.206.
A.207.
A.208.
A.209.
A.210.
A.211.
A.212.
A.213.
A.214.
A.215.
A.216.
A.217.
A.218.
A.219.
A.220.
A.221.
A.222.
A.223.
A.224.
A.225.
A.226.
A.227.
A.228.
A.229.
A.230.
A.231.
A.232.
A.233.
A.234.
A.235.
A.236.
A.237.
A.238.
A.239.
A.240.
A.241.
A.242.
A.243.

[ISELODJECINAIMIE. ...ttt bbbt b et b et b e 75

1S o 1= RS R 75
1S o) RS 75
1S 0o 1= RS 75
[ISEESCIIPISTALE.eceeieeeeieete ettt ettt st e bbbt b et e b e 76
ST ST OSSR 76
1T eSTo 10 o (@ TN =TUT=T] T F SRR 76
RS2 3 = L1 RS 76
RS2 i =D RS 76
S B TEXEUIE. ...ttt ettt a e st et e st e e ae et e e beeasesseeae e sesaeessesteeseansesreensesresnnessesseans 77
ISTST L= LU= Y a1 o USSR 77
ISEETIMEIEVENL. ...ttt e ettt bbb et be b e s b e s e e e e e e e e e aeebennas 77
RS2 i o U= S 78
S EETOUCHTEXL. ..ttt et bbb et beeb b e b e e e e et ae b nnas 78
1R A =] 1o 1= = o S 78
1SEtVEhICIEFIOAtPAraM.... ..o b 78
1S T=T A =] 1o = Y] L= USRS 78
[1SetVEhICIEROLAIONPAIAIM. ..ottt sttt 79
[1SEtVENICIEVECIOIPAIAIML......cei ittt s 79
115 o OSSOSO 79
1S OSSR 79
1T IF= U T RS 79
1] =TT o R 80
1S OSSOSO 80
1153 2= U A 113 0 =i o R 80
[ISTOPANIMALION.......ecuiieii ettt st e e e b et b et b et bbb se b 84
[ISTOPHOVEL ...t bbbt bbbt b et b et b et bt et 84
[ISTOPLOOKAL ..ottt b et et s b e st b et b et b et et e b 84
[IStOPMOVETOTAIGEL ... ettt ettt et b et b ettt bt et 84
[ISTOPPOINTAL. ..ottt b ettt b et b et b et bbbt nn b s 85
[ISTOPSOUNG.....ceieie ettt ettt b et bbbt bbbt b et bt bt et e b e 85
ISTNGLENGLNL. ...t b ettt 85
ISUDSIINGINAEX. ...t ettt e 85
T U GG O 0 a1 o] KOTSRS 85
I 7= U OO RRSRR 86
T IE= T g0 = SO USSR 86
IR Tqo =1 (@] o g =T T TSR RP 86
[TAIgEIREMOVE. ...ttt b ettt be et e b et et e bt st e s be s e e e e e e e e neeaeebeneas 86
ITElEePOrTAGENTHOME. .. .c.i i e bbbt be st b e se e ae b eas 86
IITOLOWET ...ttt ettt b e b e se et e ae R e bt e b e b e b e e et e bt eb e s b e seeee e s e neeneeneebebas 87
1 (o 181 o o 1= SRS 87
1l T o =T 0T LT SRS 87
ITrQQErSOUNALIMILEd.......c.e e st sreeeesre s e e neenreens 87
108 OSSOSO 88
1AV =T ol B 1 OSSP OO SURRURUPPN 88
1Y Tod 1Y = o T 88
1RV =Tod N[o OSSR 88
IRy o] (U4 gT=T T = ot OSSOSO 88
A= L= OSSR 89
KT IS o T 89
AT T o OSSOSO 89

viii

L T YT PSSR 90
N = L (o 1 A =T (0 [=] APPSO U RSO PROPRTPRTRRN 90
S 11 - 1] RSP SROURPRRSRO 90
B.3. CRANGEM. ... h bbbt 90
0 oto | 1= o] o 1 TSP 90
ST oo | 111 o] o T = [o VOO SO 90
S T oo | 111 o] o TR = T« OSSR S 91
2 A oo 1 (o] RS 91
RS T F= 1= Y= Y= SRS 91
(23 TR =T ¢ T 1| USSR 91
= 0 O I =V o [o] {11 T o TS 92
= 0 I =V o [o] {1171 o T =T T S 92
= 0 2 = g o [o] 17T o T =t S 92
o G T [0 £ =TT T Vo =SS 92
o 0 S 111 = o OSSOSO SRR 92
0 T ¢ a0 1= VPRSPPI 93
2 301G T80 0 0 10T o =T Vo RS 93
2 300 0 1 10V o) = R 93
00 TR o [o T 0 IS0) APPSR 93
= e T oV = A (o LA = 1 (o= S 93
= 2 O I T A=\ A = o = S 94
2 302 I o o] = od A =0 94
2o | o T (=4S 94
B.23. rUN_tIME_PEIMISSIONS. ...ceitiiitiiiteirie ettt ettt s bbbt e bbb et n et ene st neneenas 94
2 BT = g 10 U 94
B .25, ST BNIIY ittt r et R e r e n e erens 95
R ST = 1= = (| SO SOOI 95
S (] 1= RO SRRUPRRSRO 95
S T (0] 0[] RSP RR SR 95
2 32 TR (o U T o =Y oo PSS 96
23 10 IR0 (oW T o) - U PSR S 96

LOR ©d0] 0153 7= o1 £ J UV USSR 97
(O = ToTo] [=T= T [O 0] g 1) r= g £ RS 97
O = 11§ ES R 00 4151 = o | 1= PSS 97
C.3. ODJECt TYPE CONSLANTS.cueitiiiititeieeeeeie ettt sttt s e et e et b e b e b st e e ese e b e s aesaesbebe e e e eneebeseeses 98
C.4. PermiSSION CONSTANMES .. .ceiuirtirieitirteieee ettt sttt et et eb et e b se e e eseesesaesaesbebe e e e eneebesbenes 98
C.5. INVENTIONY CONSTANIS.....ccueiitiieeiee ettt ettt b e sae et e saesse e b e sb e e s e eaeeneeseesaeebesbeennenreenes 99
C.6. AttACNMENT CONSLANTS.......couiiiitiiiie ettt et b e st b et ae b e b s bese e e ebesbesbeseen 99
C.7. LN CONSLANTS......uiieieiieieeieeie sttt ettt ettt b et s e e et b e b e sbesb e b e s et e st ebesbesbesee e eneebennenes 101
C.8. LINK CONSLANIS......ccuiitieeiieiieieeie sttt sttt se ettt b e b b e ne et b e b e sb e se e b e s et e st ebeeb e bese e e enennennees 102
(O o] o] 1 (o] O] 4153 =1 o (< T U TSRO U PP 102
C.10. Change CONSIANIS........cccuieieeeieeeesesee et e et e e e e tesreeseeereeeessesseessesseessasenseesesseeensrensenns 103
(O B R Y/ o O 0T 1] =T g 1= S USSP 104
C.12. AQENt INFO CONSTANLS........ocieeiieiee ettt e e e sresre e tesreesaeseeaeesesreeansrenneens 104
C.13. Texture ANIMAtioN CONSTANIS........ccceciieirieiiriere ettt 105
C.14. Particle SysStem CONSIANLSccceieieeeeeresestesieeee e ste s e e e ae e e e se s stestesaeeeneesensenes 105
C.15. AQeNt Data CONSTANIS......cccieciiieeeereseees et e s e e re e e saesreestesreeneesesseeessrnenensrennenns 108
C.16. FIOAE CONSIANTS......couiiiiiieirie sttt ettt ettt sttt ettt st st 109
C.17. KEY CONSTAML......ctiieieeieeiieitett sttt et b b b e e et r e b s e e ss s e s et e st b e eR e b e ne e e eneen e s s 109
C.18. Miscellaneous INnteger CONSLANLS.ccurririiierere et 109
C.19. Miscellaneous StriNGg CONSIANLS........cceirriririirierieere e e 110

(@R O IV (Tt (0] GO0] g 1) =1 o} AF SRR 110

(O3 W = J0) v= 11 [0] 4 I @0 T a1 =1 | AF 110
(O Y /1 o1 (o1 (ol o[- 10 4[] (=] £ 110
C.23. VENICIE FIAGS ...ttt b bbb bt e bt s b n s 112
C.24. VENICIE TYPES. ..ttt ettt b bbbt e st b bt e bt e bt s b e b n s 112

List of Tables

3-1. Binary AritNMEtiC OPEIaAtOrSceiueuiririeieiee sttt sttt sttt sttt e b e bbbt b et e b e b 6
3-2. BOOIEAN OPEIALOLS.....cveuiiteuireetereeiereete ettt sttt e be st eb e st bt b et bt s b e bt se bt s e b e se e b e e e b et e b et s b e st ne e bt aeeb e e et e s 7
3-3. BItWISE OPEIALOS. .. .c.cteuiieeieieete ittt sttt ettt sttt be e b st bt b et b st e e bt se bt s e e b e se b et b et e b et s b st nb e bt aeeb e et e e 7
3-4. VeCtor ArtNMETIC OPEIALOLS........ci ettt sttt sttt b e se bt b et bt bbbt e b et 8
3-5. ROtation ArtNMELIC OPEIALOIS......c.ceuerirteeriee sttt sttt sttt b et b et bt b et sr et se b b 8
L I T o] aToT 0 g 1= VA U T o] [0 LSS 21
LY < Tox (o] gl U o 1o =SOSR RRPT 21
6-3. ROTALION FUNCHONS. ..ottt ettt b e s se e e et eb e b e bene et e bt eb e s beseese et e neeneenesbenbas 21
o S g Vo I 0 T 1o = USSP 22
S O IS U Tox 1o SRR PRTRR 23
9-1. 1N WOITH FUNCHIONS. ...ttt ettt n et p e 24
9-2. MESSAQING FUNCHIOMS......iiti ettt st e e e e te e e e s te s e e s tesaeeatesbeeaeenseeaeeeesaeesaesteeseeneesreeneessenneen 24
O R 1 V=T o) (oY T e 1) =SS 25

Xi

Chapter 1. Introduction

The Linden Scripting Language (LSL) is a simple, powerful language used to attach behaviors to the objects
found in Second Life. It follows the familiar syntax of a c/Java style language, with an implicit state machine for
every script.

Multiple scripts may also be attached to the same object, allowing a style of small, single-function scripts to

evolve. This leads to scripts that perform specific functions ("hover”, "follow", etc.) and allows them to be
combined to form new behaviors.

The text of the script is compiled into an executable byte code, much like Java. This byte code is then run within
a virtual machine on the simulator. Each script receives a time slice of the total simulator time allocated to
scripts, so a simulator with many scripts would allow each individual script less time rather than degrading its
own performance. In addition, each script executes within its own chunk of memory, preventing scripts from
writing into protected simulator memory or into other scripts, making it much harder for scripts to crash the
simulator.

This tutorial introduces the reader to the basic features of LSL, how to edit and apply your scripts, and a
complete reference for standard linden constants, events, and library functions.

Chapter 2. Getting Started

You're probably wondering what you can do with LSL, and how quickly you can do it. We'll start with some
simple examples, disect them, and introduce you the the script development process while we're at it.

2.1. Hello Avatar

Continuing a long tradition of getting started by looking at a script that says "Hello", we'll do just that. Though
obviously not a particularly useful example on it's own, this example will introduce us to:

- Creating a basic script
« Script states

. Calling functions

« Script events

« Applying a script to an object

2.1.1. Creating the Script

Start by opening your inventory and selecting 'Create|New Script’ from the inventory pull down menu. This will
create an empty script called 'New Script’ in your 'Scripts’ folder. Double click on the text or icon of the script
to open the script in the built in editor. When you open the script, the viewer will automatically insert a basic
skeleton for Isl. It should look like:

default
{
state_entry()
{
lISay(0, "Hello, Avatar!);
}
touch_start(integer total_number)
{
lISay(0, "Touched.");
}

A casual inspection of this script reveals that this scipt probably says 'Hello, Avatar!” when it enters some state,
and it says 'Touched. when it is touched. But since this is also probably the first time you have seen a script
we'll disect this short listing, explaining each segment individually.

Chapter 2. Getting Started

2.1.2. Default State

default

All LSL scripts have a simple implicit state machine with one or more states. All scripts must have a default
state, so iff there is only one state, it will be the 'default’ state. When a script is first started or reset, it will start
out in the default state.

The default state is declared by placing the default at the root level of the document, and marking the beginning
with an open brace '{" and ending with a close brace '}. Because of it’s privileged status, you do not declare that
it is fact a state like you normally would with other states.

Every time you enter a state, the script engine will automatically call the state_entry() event and execute the code
found there. On state exit, the script engine will automatically call the state_exit() event before calling the next
state’s state_entry handler. In our example, we call the lISay() function in state_entry() and do not bother to
define a state_exit() handler. the state entry and exit handlers are a convenient place to initialize state data and
clean up state specific data such as listen event callback.

You can read more about the default state, and how to create and utilize other statesdatethehapter

2.1.3. Functions

The language comes with well over 2BGilt in functionswhich allow scripts and objects to interact with their
enviornment. All of the built in functions start with 'II".

The example calls the 'llISay()’ function twice. [ISay() is used to emit text on the specified channel.

lISay (integer channel string text);

Say text on channel. Channel 0 is the public chat channel that all avatars see as chat text. Channels 1 to
2,147,483,648 are private channels that aren’t sent to avatars but other scripts can listen for.

You can define your own functions as long as the name does not conflict with a reserved word, built in constant,
or built in function.

Chapter 2. Getting Started

2.1.4. Touch Event

touch_start(integer total_number)

{
lISay(0, "Touched.");

}

There are many events that can be detected in your scripts by declaring a handler. The touch_start() event is
raised when a user touches the object through the user interface.

2.1.5. Try it Out

Now that we have seen the default script, and examined it in some detail, it is time to to see the script in action.
Save the script by clicking o8ave. During the save process, the editor will save the text of the script and

compile the script into bytecode and then save that. When you see message 'Compile successful!’ in the preview
window, you know the compile and save is done.

To test the script you will have to apply it to an object in the world. Create a new object in the world by context
clicking in the main world view and selectir@@reate. When the wand appears, you can create a simple primitive
by clicking in the world. Once the object appears, you can drag your newly created script onto the object to start
the script.

Soon after dragging the script onto the object, you will see the mesigga: Hello Avatar!

Make sure the touch event is working by clicking on the object. You should see the m&ssalged printed
into the chat history.

2.2. Using The Built-In Editor

The built in editor comes with most of the typical features you would expect from a basic text editor. Highlight
text with the mouse, or by holding down the shift key while using the arrow keys. You can cut, copy, paste, and
delete your selection using the 'Edit’ pull down menu or by pressing the usual shortcut key.

2.3. Using Alternative Editors

Since the built-in editor supports pasting text from the clipboard, you can employ a different editor to edit your
scripts, copying them into Second Life when you're ready to save them.

Chapter 3. Basics

Now that we have seen a very simple script in action, we need to look at the our toolchest for writing scripts. The
next set of tools we will consider are the basic building blocks for programming a script, and will be used in
every non-tribial scipt you write.

3.1. Comments

Commmenting your scripts is a good idea, and will help when you update and modify the script, or when you
adapt parts of it into other scripts. Unless the meaning is obvious, you should add comments:

. at the start of the script to explain the purpose of the script
- before every global variable to describe what it holds
« before every global function to describe what it does

- sprinked through your script wherever the code solves a problem that took you more than a few minutes to
figure out.

LSL uses Java/C++ style single line comments.

/I This script toggles a the rotation of an object

/I g_is_rotating stores the current state of the rotation. TRUE is
/I rotating, FALSE otherwise.
integer g_is_rotating = FALSE;
default
{
/I toggle state during the touch handler
touch(integer num)

{
if(g_is_rotating)
{
/I turn off rotation
lITargetOmega(<0,0,1%qt;, 0, 0);
g_is_rotating = FALSE;
}
else
{
/I rotate around the positive z axis - up.
lITargetOmega(<0,0,1>, 4, 1);
g_is_rotating = TRUE;
}
}

Chapter 3. Basics

3.2. Arithmetic Operations

Most of the common arithmetic operations are supported in Isl, and follow the C/Java syntax.

3.2.1. Assignment

The most common arithmetic operation is assignment, denoted with the '=’ sign. Loosely translated, it means,
take what you find on the right hand side of the equal sign and assign it to the left hand side. Any expression that
evaluates to a basic type can be used as the right hand side of an assignment, but the left hand side must be a
normal variable.

All basic types support assignment '=", equality '=="and inequality ''=’ operators.

/I variables to hold a information about the target
key g_target;

vector g_target_postion;

float g_target_distance;

/I function that demonstrates assignment
set_globals(key target, vector pos)

{
g_target = target;
g_target_position = pos;
/I assignment from the return value of a function
vector my_pos = llGetPos();
g_target_distance = lIVecDist(g_target_position, my_pos);
}

3.2.2. Binary Arithmetic Operators

Binary arithmetic operators behave like a funtion call that accepts two parameters of the same type, and then
return that type; however, the syntax is slightly different.

Table 3-1. Binary Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

Chapter 3. Basics

Operator Meaning

Division
% Modulo (remainder)
" Exclusive OR

Where noted, each type may have a special interpretation of a binary arithmetic operator.|Segpas
section for more details.

3.2.3. Boolean Operators

Table 3-2. Boolean Operators

Operator Meaning

< Operator returns TRUE if the left hand side is less than
the right hand side.
> Operator returns TRUE if the left hand side is greate
than the right hand side.
<= Operator returns TRUE if the left hand side is less than
or equal to the right hand sid.
>= Operator returns TRUE if the left hand side is greate
than or equal to the right hand sid.
&& Operator returns TRUE if the left hand side and right
hand side are both true.

Il Operator returns TRUE if either the left hand or right
hand side are true.

==

=

! Unary operator returns the logical negation of the
expression to the right.

3.2.4. Bitwise Operators

Table 3-3. Bitwise Operators

Operator Meaning
& Returns the bitwise and of the left and right hand side.

| Returns the bitwise or of the left and right hand side|

~ Unary operator returns the bitwise complement of the
expression to the right.

Chapter 3. Basics

3.3. Types

Variables, return values, and parameters have type information. LSL provides a small set of basic types that are
used througout the language.

LSL Types
integer
A signed, 32-bit integer value with valid range from -2147483648 to 2147483647.

float

An IEEE 32-bit floating point value with values ranging from 1.175494351E-38 to 3.402823466E+38.

key
A unique identifier that can be used to reference objects and agents in Second Life.
vector
3 floats that are used together as a single item. A vector can be used to represent a 3 dimensional position,
direction, velocity, force, impulse, or a color. Each component can be accessed via'.x’, .y’, and ".z".
Table 3-4. Vector Arithmetic Operators
Operator Meaning
+)Add two vectors together
- Subract one vector from another
* \Vector dot product
% \Vector cross product
rotation
4 floats that are used together as a single item to represent a roation. This data is interpreted as a quaternion.
Each compnent can be accessed via'.x', .y’, ".z’, and ".w'".
Table 3-5. Rotation Arithmetic Operators
Operator Meaning
+ /Add two rotations together
- Subract one rotation from another
* Rotate the first rotation by the second
Rotate the first rotation by the inverse of the second
list

A heterogeneous list of the other data types. Lista are created via comma separated values of the other data
types enclosed by '['and ']

Chapter 3. Basics

string StringVar = "Hello, Carbon Unit";
list MyList = [1234, ZERO_ROTATION, StringVar];

Yields the list:[1234, <0,0,0,1>, "Hello, Carbon Unit"]

Lists can be combined with other lists. For example:

MyList = 3.14159 + MylList;
Yields the list:[3.14159, 1234, <0,0,0,1>, "Hello, Carbon Unit"] And similarly,
MyList = MyList + MyList;

Yields:[3.14159, 1234, <0,0,0,1>, "Hello, Carbon Unit", 3.14159, 1234,
<0,0,0,1>, "Hello, Carbon Unit"]

Library functions exist used to copy data from lists, sort lists, copy/remove sublists.

3.3.1. Type Conversion

Type conversion can either occur implicitly or explicitly. Explicit type casts are accomplished using C syntax:

float foo float = 1.0;
integer foo_int = (integer)foo_float;

3.3.1.1. Implicit Casting

LSL only supports two implicit type casts: integer to float and string to key. Thus, any place you see a float
specified you can supply an integer, and any place you see a key specified, you can supply a string.

3.3.1.2. Explicit Casting

LSL supports the following explicit casts:

* Integer to String

Float to Integer

Float to String

Vector to String

Rotation to String

Chapter 3. Basics

* Integer to List

» Floatto List

» Key to List
 String to List

* Vector to List

* Rotation to List
 String to Integer
 String to Float
 String to Vector

 String to Rotation

3.4. Global Functions

Global functions are also declared much like Java/C, with the exception that no 'void’ return value exists.
Instead, if no return value is needed, just don?t specify one:

make_physical_and_spin(vector torque)

{
/I double the torque
vector double_torque = 2.0*torque;
lISetState(STATUS_PHYSICS, TRUE);
lIApplyTorque(double_torque);

}

3.5. Globhal Variables

Global variables and functions are accessible from anywhere in the file. Global variables are declared much like
Java or C, although only one declaration may be made per line:

vector gStartPosition;

Global variables may also be initialized if desired, although uninitialized global and local variables are initialized
to legal zero values:

vector gStartPosition = <10.0,10.0,10.0>

10

Chapter 3. Basics

3.6. Local Variables

Local variables are scoped below their declaration within the block of code they are declared in and may be
declared within any block of code. Thus the following code is legal and will work like C:

integer test_function()
{
/I Test vector that we can use anywhere in the function
vector test = <1,2,3>;
integer |j;
for j = 0; j < 10; j++)
{
/I This vector is a different variable than the one declared above
/I This IS NOT good coding practice
vector test = <j, j, j>;
}
/I this test fails
if (test == <9,9,9>)
{

/I never reached

}

11

Chapter 4. Flow Control

but the most basic scripts will require some kind of flow contol. LSL comes with a complete complement of
constructs meant to deal with conditional processing, looping, as well as simply jumping to a different point in
the script.

4.1. Conditional Statements

The 'if’ statement operates and has the same syntax as the Java/C version.

check_message(string message)

{
if(lmessage == "open")
{
open();
}
else if(message == "close")
{
close();
}
else
{
lISay(0, "Unknown command: " + message);
}
}

The statements between the open and close curly brace are performed if the conditional inside the parentheses
evaluates to a non-zero integer. Once a conditional is determined to be true (non-zero), no further processing of
'else’ conditionals will be considered. TINULL_KEY constant is counted as FALSE by conditional

expressions.

There can be zero or more 'else if’ statements, and an optional final 'else’ to handle the case when none of the if
statements evaluate to a non-zero integer.

The usual set of integer arithmetic and comparison operators are available.

/I a function that accepts some information about its environment and

/I determines the the 'best’ next step. This kind of code might be

/I part of a simple box meant to move close to an agent and attach to
/Il them once near. This code sample relies on the standard linden

/I library functions as well as two other methods not defined here.
assess_next_step(integer perm, integer attached, integer balance, float dist)

{

12

Chapter 4. Flow Control

string msg;
if(lattached)

{
if((perm & PERMISSION_ATTACH) && (dist < 10.0))

{
attach();

}
else if((dist > 10.0) || ((dist > 20.0) && (balance > 1000)))

{

move_closer();

}

else

{
lIRequestPermissions(liGetOwner(), PERMISSION_ATTACH);

}

4.2. Loop Constructs

Loops are a basic building block of most useful programming languages, and LSL offers the the same loop
costructs as found in Java or C.

4.2.1. for loop

A for loop is most useful for when you know how many times you need to iterate over an operation. Just like a
Java or C for loop, the parentheses have three parts, the initializer, the continuation condition, and the increment.
The loop continues while the middle term evaluates to true, and the increment step is performed at the end of
every loop.

/I move a non-physical block smootly upward (positive z) the the total
/I distance specified divided into steps discrete moves.
move_up(float distance, integer steps)

{
float step_distance = distance / (float)steps;
vector offset = <0.0, 0.0, step_distance>;
vector base_pos = lIGetPos();
integer i;
for(i = 0; i <= steps; ++i)
{
lISetPos(base_pos + i * offset);
lISleep(0.1);
}
}

13

Chapter 4. Flow Control

4.2.2. do-while loop

The do-while loop construct is most useful when you are sure that you want to perform an operation at least
once, but you are not sure how many times you want to loop. The syntax is the same as you would find in a Java
or C program. A simple english transation would be 'do the code inside the curly braces and continue doing it if
the statement after the while is true.

/I output the name of all inventory items attached to this object
talk_about_inventory(integer type)

{
string name;
integer i = O;
integer continue = TRUE;
do
{
name = lIGetinventoryName(type, i);
if(lIStringLength(name) > 0)
{
lISay(0, "Inventory " + (string)i + " " + name);
}
else
{
lISay(0, "No more inventory items");
continue = FALSE;
}
} while(continue);
}

4.2.3. while loop

The while loop behaves similarly to the do-while loop, excpet it allows you to exit the loop without doing a
single iteration inside.

mention_inventory_type(integer type)

{
integer i = lIGetinventoryNumber(type);
while(i--)
{
lISay(0, "item: " + lIGetinventory(i));
}
}

14

Chapter 4. Flow Control

4.3. Jumps

A jump is used to move the running script to a new point inside of a function or event handler. You cannot jump
into other functions or event handlers. Usually, you will want to use a jump for in situations where the if..else
statements would become too cumbersome. For example, you may want to check several preconditions, and exit
if any of them are not met.

attach_if_ready(vector target_pos)

{
/I make sure we have permission
integer perm = lIGetPerm();
if(l(perm & PERMISSION_ATTACH))
{
jump early_exit;
}
/I make sure we're 10 or less meters away
vector pos = lIGetPos()
float dist = IlVecDist(pos, target_pos);
if(dist > 10.0)
{
jump early_exit;
}
/I make sure we’re roughly pointed toward the target.
/I the calculation of max_cos_theta could be precomputed
/I as a constant, but is manually computed here to
/I illustrate the math.
float max_cos_theta = lICos(PI / 4.0);
vector toward_target = llVecNorm(target_pos - pos);
rotation rot = lIGetRot();
vector fwd = IIRot2Fwd(rot);
float cos_theta = toward_target * fwd;
if(cos_theta > max_cos_theta)
{
jump early_exit;
}
/I at this point, we've done all the checks.
attach();
@early_exit;
}

4.4. State Change

State change allow you to move through the Isl virtual machine’s flexible state machine by transitioning your
script to and from user defined states and the default state. You can define your own script state by placing the

15

Chapter 4. Flow Control

keyword 'state’ before its name and enclosing the event handlers with open and close curly braces ('{’ and '}.)
You can invoke the transition to a new state by calling it with the syntax: 'state <statename>"’.

default
{
state_entry()
{
lISay(0, "I am in the default state");
lISetTimer(1.0);
}
timer()
{
state SpinState;
}
}
state SpinState
{
state_entry()
{
lISay(0, "I am in SpinState!");
lITargetOmega(<0,0,1>, 4, 1.0);
[ISetTimer(2.0);
}
timer()
{
state default;
}
state_exit()
{
lITargetOmega(<0,0,1>, 0, 0.0);
}
}

16

Chapter 5. States

All scripts must have a 'default’ state, which is the first state entered when the script starts. States contain event
handlers that are triggered by the LSL virtual machine. All states must supply at least one event handler - it's not
really a state without one.

When state changes, all callback settings are retained and all pending events are cleared. For example, if you
have set a listen callback in the default state and do not remove it during state_exit(), the listen callback will be
called in your new state if a new listen event passes the filter set in the default state.

5.1. state_entry()

The state_entry event occurs whenever a new state is entered, including program start, and is always the first
event handled. No data is passed to this event handler.

You will usually want to set callbacks for things such as timers and seonsor in the state_entry() callback of the
state to put your object into a useful condition for that state.

17

Chapter 5. States

Warning

It is a common mistake to assume that the state_entry() callback is called when you rez an object out
of your inventory. When you derez an object into your inventory the current state of the script is saved,
so there will not be a call to state_entry() during the rez. If you need to provide startup code every time
an object is created, you should create a global function and call it from both state_entry() and the
on_rez() callbacks.

/I global initialization function.

init()

{
/I Set up a listen callback for whoever owns this object.
key owner = lIGetOwner();

liListen(0, "™, owner, ");
}
default
{
state_entry()
{
init();
}
on_rez(integer start_param)
{
init();
}
listen(integer channel, string name, key id, string message)
{
lISay(0, "Hi " + name + "! You own me.");
}
}

5.2. state_exit()

The state_entry event occurs whenever the state command is used to transition to another state. It is handled
before the new state’s state_entry event.

You will want to provide a state_exit() if you need to clean up any events that you have requested in the current
state, but do not expect in the next state.

default
{
state_entry()
{
state TimerState;
}

18

Chapter 5. States

}
state TimerState
{
state_entry()
{ /I set a timer event for 5 seconds in the future.
lISetTimerEvent(5.0);
}
timer()
{
lISay(0, “"timer");
state ListenState;
}
state_exit()
{
/I turn off future timer events.
lISetTimerEvent(0.0);
}
}

integer g_listen_control;

state ListenState

{
state_entry()
{
/I listen for anything on the public channel
g_listen_control = lIListen(0, ", NULL_KEY, ");
}
listen(integer channel, string name, key id, string message)
{
lISay(0, "listen");
state TimerState;
}
state_exit()
{
/I turn off the listener
lIListenRemove(g_listen_control);
}
}

The state_exit() handler is not called when an object is being deleted - all callbacks, handlers, sounds, etc, will
be cleaned up automatically for you.

19

Chapter 5. States

5.3. States vs. Global variables

A state and a set of global variables can serve the same purpose, and each can be expressed in terms of the other.
In general, you should prefer the use of states over global variables since states allow you to immediately assume
script state without making comparisons. The less comparisons a script makes, the more regular code statements
it can run.

20

Chapter 6. Math

6.1. Tables of Functions

Table 6-1. Trigonometry Functions

Function

I1Abs

IIAcos

IIAsin

IIAtan2

lICell

IICos

lIFabs

lIFloor

IIFrand

lIPow

IIRound

I1Sin

[ISqrt

IITan

Table 6-2. Vector Functions

Function

IIVecDist

IIVecMag

IIVecNorm

Table 6-3. Rotation Functions

Function

IIAngleBetween

IIAxes2Rot

IIAxisAngle2Rot

lIEuler2Rot

IIRot2Angle

IIROt2 Axis

IIRot2Euler

[IRot2Fwd

lIRot2L eft

IIRot2Up

IIRotBetween

21

Chapter 7. Strings

7.1. Tables of Functions

Table 7-1. String Functions

Function

[IDeleteSubString

[IGetSubString

llinsertString

[IStringLength

[ISubStringIndex

lIToLower

[IToUpper

22

Chapter 8. Lists

8.1. Tables of Functions

Table 8-1. List Functions

Function

[ICSV2List

lIDeleteSubList

[IGetListEntryType

[IGetListLength

lIList2CSV

lIList2Float

lIList2Integer

lIList2Key

lIList2List

lIList2ListStrided

lIList2Rot

lIList2String

lIList2Vector

lIListFindList

lIListinsertList

lIListRandomize

lIListSort

lIParseString2List

23

Chapter 9. Communication

9.1. Tables of Functions

Table 9-1. In World Functions

Function

lIListen

lIListenControl

lIListenRemove

[ISay

lIShout

IIWhisper

Table 9-2. Messaging Functions

Function

IIEmail

IGetNextEmail

llinstantMessage

24

Chapter 10. Inventory

10.1. Tables of Functions

Table 10-1. Inventory Functions

Function

[IAllowlnventoryDrop

[IGetinventoryKey

[IGetIinventoryName

[IGetIinventoryNumber

lIGetNotecardLine

lIGivelnventory

[IGivelnventoryList

[IRemovelnventory

[IRequestinventoryData

IIRezObject

Chapter 11. Vehicles

Vehicles are a new feature now available for use through LSL. This chapter will cover the basics of how vehicles
work, the terms used when describing vehicles, and a more thorough examination of the api available.

There are several ways to make scripted objects move themselves around. One way is to turn the object into a
"vehicle". This feature is versatile enough to make things that slide, hover, fly, and float. Some of the behaviors
that can be enabled are:

« deflection of linear and angular velocity to preferred axis of motion
« asymmetric linear and angular friction

» hovering over terrain/water or at a global height

* banking on turns

« linear and angular motor for push and turning

11.1. Overview

Each scripted object can have one vehicle behavior that is configurable throutBetivehicleType
[ISetVehicleFloatParapiiSetVehicleVectorParapiSetVehicleRotationParafiSetVehicleFlagsand
[IRemoveVehicleFlagibrary calls.

These script calls are described in more detail below, but the important thing to notice here is that the vehicle
behavior has several parameters that can be adjusted to change how the vehicle handles. Depending on the values
chosen the vehicle can veer like a boat in water, or ride like a sled on rails.

Setting the vehicle flags allow you to make exceptions to some default behaviors. Some of these flags only have
an effect when certain behaviors are enabled. For example, the VEHICLE_FLAG_HOVER_WATER_ONLY will
make the vehicle ignore the height of the terrain, however it only makes a difference if the vehicle is hovering.

11.2. Warnings

Vehicles are new in Second Life 1.1 and some of the details of their behavior may be changed as necessary to
ensure stability and user safety. In particular, many of the limits and defaults described in the appendices will
probably change and should not be relied upon in the long term.

It is not recommended that you mix vehicle behavior with some of the other script calls that provide impulse and
forces to the object, especialletBuoyancyllSetForce lISetTorque andliSetHoverHeight

26

Chapter 11. Vehicles

While the following methods probably don’t cause any instabilities, their behavior may conflict with vehicles
and cause undesired and/or inconsistent results, st os&At, IIRotLookAt, IIMoveToTarget and
[ITargetOmegaat your own risk.

If you think you have found a bug relating to how vehicle’s work, one way to submit the problem is to give a
copy of the vehicle and script to Andrew Linden with comments or a notecard describing the problem. Please

name all submissions "Bugged Vehicle XX" where XX are your Second Life initials. The vehicle and script will
be examined at the earliest convenience.

11.3. Definitions

The terms "roll", "pitch", and "yaw" are often used to describe the modes of rotations that can happen to a
airplane or boat. They correspond to rotations about the local x-, y-, and z-axis respectively.

z-axis
yaw-axis /|\
| __. y-axis
.] /| pitch-axis

_IN A\ NN W
\| \ L\
| __ 0000000 N\ \ x-axis
/| -,) / roll-axis
I/ I/

I/

The right-hand-rule, often introduced in beginning physics courses, is used to define the direction of positive
rotation about any axis. As an example of how to use the right hand rule, consider a positive rotation about the
roll axis. To help visualize how such a rotation would move the airplane, place your right thumb parallel to the
plane’s roll-axis such that the thumb points in the positive x-direction, then curl the four fingers into a fist. Your
fingers will be pointing in the direction that the plane will spin.

A I\

CCE0 | I \ axis of
VWL | / rotation
| \ -\
| | + positive
\ e rotation
JUEA J

27

Chapter 11. Vehicles

Many of the parameters that control a vehicle’s behavior are of the form:

VEHICLE_BEHAVIOR_TIMESCALE. A behavior’s "timescale" can usually be understood as the time for the
behavior to push, twist, or otherwise affect the vehicle such that the difference between what it is doing, and
what it is supposed to be doing, has been reduced to 1/e of what it was, where "e" is the natural exponent
(approximately 2.718281828). In other words, it is the timescale for exponential decay toward full compliance to
the desired behavior. When you want the vehicle to be very responsive use a short timescale of one second or
less, and if you want to disable a behavior then set the timescale to a very large number like 300 (5 minutes) or
more. Note, for stability reasons, there is usually a limit to how small a timescale is allowed to be, and is usually
on the order of a tenth of a second. Setting a timescale to zero is safe and is always equivalent to setting it to its
minimum. Any feature with a timescale can be effectively disabled by setting the timescale so large that it would
take them all day to have any effect.

11.4. Setting the Vehicle Type

Before any vehicle parameters can be set the vehicle behavior must first be enabled. It is enabled by calling
lISetVehicleTypewith any VEHICLE_TYPE_*, except VEHICLE_TYPE_NONE which will disable the
vehicle. See thgehicle type constantection for currently available types. More types will be available soon.

Setting the vehicle type is necessary for enabling the vehicle behavior and sets all of the parameters to its default
values. For each vehicle type listed we provide the corresponding equivalent code in long formiatpteriant

to realize that the defaults anet the optimal settings for any of these vehicle types and that they will definitely

be changed in the future. Do not rely on these values to be constant until specified.

Should you want to make a unique or experimental vehicle you will still have to enable the vehicle behavior with
one of the default types first, after which you will be able to change any of the parameters or flags within the
allowed ranges.

Setting the vehicle type does not automatically take controls or otherwise move the object. However should you
enable the vehicle behavior while the object is free to move and parked on a hill then it may start to slide away.

We're looking for new and better default vehicle types. If you think you've found a set of parameters that make a
better car, boat, or any other default type of vehicle then you may submit your proposed list of settings to
Andrew Linden via a script or notecard.

11.5. Linear and Angular Deflection

A common feature of real vehicles is their tendency to move along "preferred axes of motion". That is, due to
their wheels, wings, shape, or method of propulsion they tend to push or redirect themselves along axes that are
static in the vehicle’s local frame. This general feature defines a class of vehicles and included in this category a
common dart is a "vehicle": it has fins in the back such that if it were to tumble in the air it would eventually

align itself to move point-forward -- we'll call this alignment effeartgular deflection

A wheeled craft exhibits a different effect: when a skateboard is pushed in some direction it will tend to redirect
the resultant motion along that which it is free to roll -- we’ll call this effixmear deflection

28

Chapter 11. Vehicles

So a typical Second Life vehicle is an object that exhibits linear and/or angular deflection along the "preferential
axes of motion". The default preferential axes of motion are the local x- (at), y- (left), and z- (up) axes of the

local frameof the vehicle’s root primitive. The deflection behaviors relate to the x-axis (at): linear deflection will
tend to rotate its velocity until it points along it's positive local x-axis while the angular deflection will tend to
reorient the vehicle such that it's x-axis points in the direction that it is moving. The other axes are relevant to
vehicle behaviors that are described later, such as the vertical attractor which tries to keep a vehicle’s local z-axis
pointed toward the world z-axis (up). The vehicle axes can be rotated relative to the object’s actual local axes by
using the VEHICLE_REFERENCE_FRAME parameter, however that is an advanced feature and is covered in
detail in a later section of these documents.

Depending on the vehicle it might be desirable to have lots of linear and/or angular delfection or not. The speed
of the deflections are controlled by setting the relevant parameters usiti§etéehicleFloatPararscript call.

Each variety of deflection has a "timescale” parameter that determines how quickly a full deflection happens.
Basically the timescale it the time coefficient for exponential decay toward full deflection. So, a vehicle that
deflects quickly should have a small timescale. For instance, a typical dart might have a angular deflection
timescale of a couple of seconds but a linear deflection of several seconds; it will tend to reorient itself before it
changes direction. To set the deflection timescales of a dart you might use the lines below:

lISetVehicleFloatParam(VEHICLE_ ANGULAR_DEFLECTION_TIMESCALE, 2.0);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 6.0);

Each variety of deflection has an "efficiency" parameter that is a slider between 0.0 and 1.0. Unlike the other
efficiency parameter of other vehicle behaviors, the deflection efficiencies do not slide between "bouncy" and
"damped", but instead slide from "no deflection whatsoever" (0.0) to "maximum deflection" (1.0). That is, they
behave much like the deflection timescales, however they are normalized to the range between 0.0 and 1.0.

11.6. Moving the Venhicle

Once enabled, a vehicle can be pushed and rotated by external forces and/or from script calls such as
lIApplylmpulse however linear and angular motors have been built in to make motion easier and smoother.
Their directions can be set using titteet\VehicleVectorPararoall. For example, to make the vehicle try to move
at 5 meters/second along its local x-axis (the default look-at direction) you would put the following line in your
script:

lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <5, 0, 0>);

To prevent vehicles from moving too fast the magnitude of the linear motor is clamped to be no larger than about
30 meters/second. Note that this is clamped mostly because of limitations of the physics engine, and may be
raised later when possible.

29

Chapter 11. Vehicles

Setting the motor speed is not enough to enable all interesting vehicles. For example, some will want a car that
immediately gets up to the speed they want, while others will want a boat that slowly climbs up to its maximum
velocity. To control this effect you can use the VEHICLE_LINEAR_MOTOR_TIMESCALE parameter.

Basically the "timescale" of a motor is the time constant for the vehicle to exponentially accelerate toward its full
speed.

What would happen if you were to accidentally set the vehicle’s linear velocity to maximum possible speed and
then let go? It would run away and never stop, right? Not necessarily: an automatic "motor decay" has been built
in such that all motors will gradually decrease their effectiveness after being set.

Each time the linear motor’s vector is set its "grip" immediately starts to decay exponentially with a timescale
determined by the VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, such that after enough time the

motor ceases to have any effect. This decay timescale serves two purposes. Firstcamoetiie set longer

than 120 seconds, andakvaysenabled it gaurantees that a vehicle will not push itself about forever in the
absence of active control (from keyboard commands or some logic loop in the script). Second, it can be used to
push some vehicles around using a simple impulse model. That is, rather than setting the motor "on" or "off"
depending on whether a particular key is pressed "down" or "up" the decay timescale can be set short and the
motor can be set "on" whenever the key transitions from "up” to "down" and allowed to automatically decay.

Since the motor’s effectiveness is reset whenever the motor’s vector is set, then setting it to a vector of length
zero is different from allowing it to decay completely. The first case will cause the vehicle to try to reach zero
velocity, while the second will leave the motor impotent.

The two motor timescales have very similar names, but have different effects, so try not to get them confused.
VEHICLE_LINEAR_MOTOR_TIMESCALE is the time for motor to "win", and
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE is the time for the motor’s "effectiveness" to decay
toward zero. If you set one when you think you are changing the other you will have frustrating results. Also, if
the motor’s decay timescale is shorter than the regular timescale, then the effective magnitude of the motor
vector will be diminished.

11.7. Steering the Vehicle

Much like the linear motor, there is also an angular motor that is always on, and whose direction and magnitude
can be set. For example, to make a vehicle turn at 5 degrees/sec around it's local z-axis (its up-axis) you might
add the following lines to its script:

vector angular_velocity = <0, 0, 5 * PI / 180>;
lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, angular_velocity);

The magnitude of the angular motor is capped to be no more than two rotations per second (4*PI radians/sec).

Also like the linear motor it has an efficiency parameter, VEHICLE_ ANGULAR_MOTOR_TIMESCALE, and a
motor decay parameter, VEHICLE_ ANGULAR_MOTOR_DECAY_TIMESCALE, which is set to the

30

Chapter 11. Vehicles

maximum possible value of 120 seconds by default.

When steering a vehicle you probably don’t want it to turn very far or for very long. One way to do it using the
angular motor would be to leave the decay timescale long, enable a significant amount of angular friction (to
quickly slow the vehicle down when the motor is turned off) then set the angular motor to a large vector on a key
press, and set it to zero when the key is released. Another way to do it is to set the
VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE to a short value and push the vehicle about with a

more impulsive method that sets the motor fast on a key press down (and optionally setting the motor to zero on
a key up) relying on the automatic exponential decay of the motor’s effectiveness rather than a constant angular
friction.

Setting the angular motor to zero magnitude is different from allowing it to decay. When the motor completely
decays it no longer affects the motion of the vehicle, however setting it to zero will reset the "grip" of the vehicle
and will make the vehicle try to achieve zero angular velocity.

For some vehicles it will be possible to use the "banking feature" to turn. "Banking" is what airplanes and
motorcycles do when they turn. When a banking vehicle twists about its roll-axis there is a resultant spin around
its yaw-axis. Banking is only available when using the "vertical attractor" which is described below.

11.8. The Vertical Attractor

Some vehicles, like boats, should always keep their up-side up. This can be done by enabling the "vertical
attractor" behavior that springs the vehicle’s local z-axis to the world z-axis (a.k.a. "up"). To take advantage of
this feature you would set the VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of

the spring frequency, and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the
damping. An efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an efficiency of 1.0
will cause the spring to reach it's equilibrium with exponential decay.

lISetVehicleVectorParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 4.0);
lISetVehicleVectorParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.5);

The vertical attractor is disabled by setting its timescale to anything larger than 300 seconds.

Note that by default the vertical attractor will prevent the vehicle from diving and climbing. So, if you wanted to
make a airplane you would probably want to unlock the attractor around the pitch axis by setting the
VEHICLE_FLAG_LIMIT_ROLL_ONLY bit:

lISetVehicleFlags(VEHICLE_FLAG_LIMIT_ROLL_ONLY);

31

Chapter 11. Vehicles

11.9. Banking

The vertical attractor feature must be enabled in order for the banking behavior to function. The way banking
works is this: a rotation around the vehicle’s roll-axis will produce a angular velocity around the yaw-axis,
causing the vehicle to turn. The magnitude of the yaw effect will be proportional to the
VEHICLE_BANKING_COEF, the angle of the roll rotation, and sometimes the vehicle’s velocity along it's
preferred axis of motion.

The VEHICLE_BANKING_COEF can vary between -1 and +1. When it's positive then any positive rotation (by
the right-hand rule) about the roll-axis will effect a (negative) torque around the yaw-axis, making it turn to the
right -- that is the vehicle will lean into the turn, which is how real airplanes and motorcycle’s work. Negating
the banking coefficient will make it so that the vehicle leans to the outside of the turn (not very "physical” but
might allow interesting vehicles so why not?).

The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making banking

vehicles do what you want rather than what the laws of physics allow. For example, consider a real motorcycle...
it must be moving forward in order for it to turn while banking, however video-game motorcycles are often
configured to turn in place when at a dead stop -- because they’re often easier to control that way using the
limited interface of the keyboard or game controller. The VEHICLE_BANKING_MIX enables combinations of
both realistic and non-realistic banking by fuctioning as a slider between a banking that is correspondingly
totally static (0.0) and totally dynamic (1.0). By "static" we mean that the banking effect depends only on the
vehicle’s rotation about it's roll-axis compared to "dynamic" where the banking is also proportional to it's

velocity along it’s roll-axis. Finding the best value of the "mixture" will probably require trial and error.

The time it takes for the banking behavior to defeat a pre-existing angular velocity about the world z-axis is
determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to bank quickly then give it

a banking timescale of about a second or less, otherwise you can make a sluggish vehicle by giving it a timescale
of several seconds.

11.10. Friction Timescales

VEHICLE_LINEAR_FRICTION_TIMESCALE is a vector parameter that defines the timescales for the vehicle

to come to a complete stop along the three local axes of the vehicle’s reference frame. The timescale along each
axis is independent of the others. For example, a sliding ground car would probably have very little friction along
its X- and z-axes (so it can easily slide forward and fall down) while there would usually significant friction along
its y-axis:

lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <1000, 1000, 3>);

Remember that a longer timescale corresponds to a weaker friction, hence to effectively disable all linear friction
you would set all of the timescales to large values.

32

Chapter 11. Vehicles

Setting the linear friction as a scalar is allowed, and has the effect of setting all of the timescales to the same
value. Both code snippets below are equivalent, and both make friction negligible:

/I set all linear friction timescales to 1000
lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <1000, 1000, 1000>);

/I same as above, but fewer characters
lISetVehicleFloatParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, 1000);

VEHICLE_ANGULAR_FRICTION_TIMESCALE is also a vector parameter that defines the timescales for the
vehicle to stop rotating about the x-, y-, and z-axes, and are set and disabled in the same way as the linear friction.

11.11. Buoyancy

The vehicle has a built-in buoyancy feature that is independent défRatBuoyancycall. It is recommended that
the two buoyancies do not mix! To make a vehicle buoyant, set the VEHICLE_BUOQOYANCY parameter to
something between 0.0 (no buoyancy whatsoever) to 1.0 (full anti-gravity).

The buoyancy behavior is independent of hover, however in order for hover to work without a large offset of the
VEHICLE_HOVER_HEIGHT, the VEHICLE_BUOYANCY should be set to 1.0.

It is not recommended that you mix vehicle buoyancy withltiBetBuoyancyscript call. It would probably
cause the object to fly up into space.

11.12. Hover

The hover behavior is enabled by setting the VEHICLE_HOVER_TIMESCALE to a value less than 300
seconds; larger timescales totally disable it. Most vehicles will work best with short hover timescales of a few
seconds or less. The shorter the timescale, the faster the vehicle will slave to is target height. Note, that if the
values of VEHICLE_LINEAR_FRICTION_TIMESCALE may affect the speed of the hover.

Hover is independent of buoyancy, however the VEHICLE_BUOYANCY should be set to 1.0, otherwise the
vehicle will not lift itself off of the ground until the VEHICLE_HOVER_HEIGHT is made large enough to
counter the acceleration of gravity, and the vehicle will never float all the way to its target height.

The VEHICLE_HOVER_EFFICIENCY can be thought of as a slider between bouncy (0.0) and smoothed (1.0).
When in the bouncy range the vehicle will tend to hover a little lower than its target height and the
VEHICLE_HOVER_TIMESCALE will be approximately the oscillation period of the bounce (the real period

will tend to be a little longer than the timescale).

33

Chapter 11. Vehicles

For performance reasons, until improvements are made to the Second Life physics engine the vehicles can only
hover over the terrain and water, so they will not be able to hover above objects made out of primitives, such as
bridges and houses. By default the hover behavior will float over terrain and water, however this can be changed
by setting some flags:

If you wanted to make a boat you should set the VEHICLE_HOVER_WATER_ONLY flag, or if you wanted to
drive a hover tank under water you would use the VEHICLE_HOVER_TERRAIN_ONLY flag instead. Finally,
if you wanted to make a submarine or a balloon you would use the VEHICLE_HOVER_GLOBAL_HEIGHT.
Note that the flags are independent of each other and that setting two contradictory flags will have undefined
behavor. The flags are set using the script call lISetVehicleFlags().

The VEHICLE_HOVER_HEIGHT determines how high the vehicle will hover over the terrain and/or water, or
the global height, and has a maximum value of 100 meters. Note that for hovering purposes the "center” of the
vehicle is its "center of mass" which is not always obvious to the untrained eye, and it changes when avatar’s sit
on the vehicle.

11.13. Reference Frame

The vehicle relies on the x- (at), y- (left), and z- (up) axes in order to figure out which way it preferres to move
and which end is up. By default these axes are identical to the local axes of the root primitive of the object,
however this means that the vehicle’s root primitive must, by default, be oriented to agree with the designed at,
left, and up axes of the vehicle. But, what if the vehicle object was already pre-built with the root primitive in
some non-trivial orientation relative to where the vehicle as a whole should move? This is where the
VEHICLE_REFERENCE_FRAME parameter becomes useful; the vehicle’s axes can be arbitrarily reoriented
by setting this parameter.

As an example, suppose you had built a rocket out of a big cylinder, a cone for the nose, and some stretched cut
boxes for the fins, then linked them all together with the cylinder as the root primitive. Ideally the rocket would
move nose-first, however the cylinder’s axis of symmetry is its local z-axis while the default "at-axis" of the
vehicle, the axis it will want to deflect to forward under angular deflection, is the local x-axis and points out from
the curved surface of the cylinder. The script code below will rotate the vehicle’s axes such that the local z-axis
becomes the "at-axis" and the local negative x-axis becomes the "up-axis":

/I rotate the vehicle frame -PIl/2 about the local y-axis (left-axis)
rotation rot = lIEuler2Rot(0, PI/2, 0);
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, rot);

Another example of how the reference frame parameter could be used is to consider flying craft that uses the
vertical attractor for stability during flying but wants to use VTOL (vertical takeoff and landing). During flight
the craft’s dorsal axis should point up, but during landing its nose-axis should be up. To land the vehicle: while
the vertical attractor is in effect, rotate the existing VEHICLE_ REFERENCE_FRAME by +P1/2 about the
left-axis, then the vehicle will pitch up such that it's nose points toward the sky. The vehicle could be allowed to
fall to the landing pad under friction, or a decreasing hover effect.

34

Appendix A. Linden Library Functions

Complete listing of the Linden Library function calls available in Isl.

A.l. llAbs

integer llAbs (integer val);

Returns the absolute value vl .

A.2. lIAcos

float IllAcos (float val);

Returns the arccosine in radiansval .

A.3. lIAddToLandPassList

lIAddToLandPassList (key avatar , float hours);

Add avatar to the land pass list fdnours .

A.4. lIAdjustSoundVolume

lIAdjustSoundVolume (float volume);

Adjusts the volume of the currently playing attached sound startedi®lttySoundor lILoopSound This
function Has no effect on sounds started witliggerSound

A.5. llAllowlnventoryDrop

lIAllowInventoryDrop (integer add);

35

Appendix A. Linden Library Functions

If add == TRUE, users that do no have object modify permissions can still drop inventory items onto object.

A.6. lIAngleBetween

float llAngleBetween (rotation a, rotation b);

Returns the angle in radians between rotat@asndb.

A.7. llApplylmpulse

lIApplylmpulse (vector force , integer local);

Applies theimpulse in local coordinates ifocal == TRUE. Otherwise the impulse is applied in global
coordinates. This function only works on physical objects.

A.8. llApplyRotationallmpulse

llApplyRotationallmpulse (vector force , integer local);

Applies a rotationaimpulse force in local coordinates Ibcal == TRUE. Otherwise the impulse is applied
in global coordinates. This function only works on physical objects.

A.9. lIASIn

float llAsin (float val);

Returns the arcsine in radianswafl .

A.10. llIAtan2

float llAtan2 (float y, float X);

36

Appendix A. Linden Library Functions

returns the arctangent2 pf x

A.11. llIAttachToAvatar

llIAttachToAvatar (key avatar , integer attachment);

Attach toavatar at pointattachment . Requires th€ ERMISSION_ATTACHruntime permission.

A.12. lIAvatarOnSitTarget

key IlAvatarOnSitTarget (void);

If an avatar is sitting on the sit target, return the avatar's k&l L_KEY otherwise. This only will detect
avatars sitting on sit targets defined wititTarget

A.13. llIAxes2Rot

rotation lIAxes2Rot (vector fwd , vector left , vector up);

Returns the rotation represented by coordinate dxds left , andup.

A.14. lIAxisAngle2Rot

rotation lIAXisAngle2Rot (vector axis , float angle);

Returns the rotation generatadgle aboutaxis .

A.15. lIBreakAllLinks

lIBreakAllLinks (void);

37

Appendix A. Linden Library Functions

Delinks all objects in the link set. Requires the permis®#&RMISSION_CHANGE_LINKSe set.

A.16. lIBreakLink

lIBreakLink (integer linknum);

Delinks the object with the givelink number. Requires permissi®ERMISSION_CHANGE_LINKSe set.

A.17. lICSV2List

list IICSV2List (string src);

Create a list from a string of comma separated values specifi@g in

A.18. lICeil

integer lICeil (float val);

Returns largest integer value »al .

A.19. lICloud

float lICloud (vector offset);

Returns the cloud density at the object positiooffset

A.20. lICollisionFilter

lICollisionFilter (string name, key id , iteger accept);

38

Appendix A. Linden Library Functions

If accept == TRUE, only accept collisions with objeateime andid , otherwise with objects natame or
id . Specify an empty string MULL_KEY to not filter on the corresponding parameter.

A.21. lICollisionSound

lICollisionSound (string impact_sound , float impact_volume);

Suppress default collision sounds, replace default impact soundémgtict sound found in the object
inventory. Supply an empty string to suppress collision sounds.

A.22. lICollisionSprite

lICollisionSprite (string impact_sprite);

Suppress default collision sprites, replace default impact spriteimjtact_sprite found in the object
inventory. Supply an empty string to just suppress.

A.23. lICos

float llICos (float theta);

Returns the cosine dlieta radians.

A.24. lICreateLink

lICreateLink (key target , integer parent);

Attempt to link object script is attached to atadget . Requires permission
PERMISSION_CHANGE_LINKSe set. Ifparent == TRUE, object script is attached to is the root.

A.25. lIDeleteSublList

list llDeleteSubList (list src , integer start , integer end);

39

Appendix A. Linden Library Functions

Remove the slice from the list and return the remainder.sStag andend are inclusive, so 0, length - 1

would delete the entire list and 0,0 would delete the first list entry. Using negative numbstarfor and/or

end causes the index to count backwards from the length of the list, so 0,-1 would delete the entire list. If

start is larger tharend the list deleted is the exclusion of the entries, so 6,4 would delete the entire list except
for the 8" list entry.

A.26. lIDeleteSubString

stiring lIDeleteSubString (string src , integer start , integer end);

Removes the indicated substring and returns the resultstBine andend are inclusive, so 0,length-1 would
delete the entire string and 0,0 would delete the first character. Using negative numiséast forand/orend
causes the index to count backwards from the length of the string, so 0,-1 would delete the entire string. If
start s larger than end the sub string is the exclusion of the entries, so 6,4 would delete the entire string
except for the B character.

A.27. lIDetachFromAvatar

lIDetachFromAvatar (key avatar);

Drop off of avatar

A.28. lIDetectedGrab

vector lIDetectedGrab (integer number);

Returns the grab offset of detected objeeimber . Returns <0,0,0> if number is not valid sensed object.

A.29. lIDetectedKey

key llIDetectedKey (integer number);

Returns the key of detected objextmber . ReturndNULL_KEY if number is not valid sensed object.

40

Appendix A. Linden Library Functions

A.30. lIDetectedLinkNumber

integer lIDetectedLinkNumber (integer number);

Returns the link position of the triggered event for touches. 0 for a non-linked object, 1 for the root of a linked
object, 2 for the first child, etc.

A.31. lIDetectedName

string lIDetectedName (integer number);

Returns the name of detected objeatmber . Returns empty string ifiumber is not valid sensed object.

A.32. lIDetectedOwner

key lIDetectedOwner (integer number);

Returns the key of detectedimber object’'s owner. Returns invalid keymfumber is not valid sensed object.

A.33. [IDetectedPos

vector |IDetectedPos (integer number);

Returns the position of detected objecimber . Returns <0,0,0> ihumber is not valid sensed object.

A.34. lIDetectedRot

rotation lIDetectedRot (integer number);

Returns the rotation of detected objacimber . Returns <0,0,0,1> itumber is not valid sensed object).

41

Appendix A. Linden Library Functions

A.35. lIDetectedType

integer lIDetectedType (integer number);

Returns the type (AGENT, ACTIVE, PASSIVE, SCRIPTED) of detected objeatber . Returns 0 ihumber
is not valid sensed object. Note thatmber is a bitfield, so comparisons need to be a bitwsie and check. eg:

integer type = lIDetectedType(0);
if (type & AGENT)

{
/I ...do stuff with the agent

}

A.36. lIDetectedVel

vector lIDetectedVel (integer number);

Returns the velocity of detected objextmber . Returns <0,0,0> iumber is not valid sensed object.

A.37. lIDialog

lIDialog (key avatar , string message, list buttons , integer channel);

Opens a "notify box" in the top-right corner of the given avatar's screen displaying the message. Up to four
buttons can be specified in a list of strings. When the player clicks a button, the name of the button is chatted on
the specified channel. Channels work just like lISay(), so channel 0 can be heard by everyone. The chat
originates at the object’s position, not the avatar’s position. e.g.

LLDialog(who, "Are you a boy or a girl?", ["Boy", "Girl"], 4913);
LLDialog(who, "This shows only an OK button.", [], 192);
lIDialog(who, "This chats so you can hear it.", ["Hooray"], 0);

A.38. lIDie

lIDie (void);

42

Delete the object which holds the script.

A.39. lIDumpList2String

string lIDumpList2String (list src , string separator);

Write the list out in a single string using separator between values.

A.40. lIEdgeOfWorld

integer llEdgeOfWorld (vector pos, vector dir);

Returns TRUE if the line alondir
FALSE if that edge crosses into another simulator.

A.41. lIEjectFromLand

llIEjectFromLand (key pest);

Ejectspest from land that you own.

A.42. lIEmall

lIEmail (string address , string subject , string message);
Sends email taddress with subject andmessage.

A.43. lIEuler2Rot

rotation lIEuler2Rot (vector vec);

Appendix A. Linden Library Functions

from pos hits the edge of the world in the current simulator and returns

43

Returns the rotation represented by Euler Angle .

A.44. lIFabs

float lIFabs (float val);

Returns the absolute value vl .

A.45. lIFloor

integer lIFloor (float val);

Returns largest integer value €al .

A.46. lIFrand

float llIFrand (float mag);

Returns a pseudo-random number betweemfgy).

A.47. lIGetAccel

vector llGetAccel (void);

Gets the acceleration.

A.48. lIGetAttached

integer llGetAttached (void);

Returns the object attachment point or O if not attached.

Appendix A. Linden Library Functions

44

Appendix A. Linden Library Functions

A.49. lIGetAgentinfo

integer llIGetAgentinfo (key id);

Returns information about the given agaht. Returns a bitfield ohgent info constants

A.50. lIGetAgentSize

vector llGetAgentSize (key id);

If the agentid is in the same sim as the object, returns the size of the avatar.

A.51. lIGetAlpha

float llIGetAlpha (integer face);

Returns the alpha of the givéace . If face is ALL_SIDESthe value returned is the mean average of all faces.

A.52. lIGetAndResetTime

float lIGetAndResetTime (void);

Gets the time in seconds since creation and sets the time to zero.

A.53. lIGetAnimation

string llIGetAnimation (key id);

Returns the currently playing animation for avathr.

45

Appendix A. Linden Library Functions

A.54. lIGetCenterOfMass

vector llGetCenterOfMass (void);

Returns the center of mass of the root object.

A.55. lIGetColor

vector llGetColor (integer face);

Returns the color oface as a vector of red, green, and blue values between 0 andatelf is ALL_SIDES
the color returned is the mean average of each channel.

A.56. lIGetDate

string llIGetDate (void);

Returns the current UTC date as YYYY-MM-DD.

A.57. lIGetEnergy

float llIGetEnergy (void);

Returns how much energy is in the object as a percentage of maximum.

A.58. lIGetForce

vector llGetForce (void);

Returns the current force if the script is physical.

46

A.59. lIGetFreeMemory

integer llIGetFreeMemory (void);

Returns the available heap space for the current script.

A.60. lIGetinventoryKey

key lIGetinventoryKey (string name);

Returns the key of the inventoname.

A.61. lIGetinventoryName

string lIGetinventoryName (integer type , integer number);

Appendix A. Linden Library Functions

Get the name of the inventory itenumber of type . Use theinventory constant® specify thetype .

A.62. lIGetinventoryNumber

integer liGetinventoryNumber (integer type);

Get the number of items a@fpe in the object inventory. Use thiaventory constant® specify thetype .

A.63. lIGetKey

key llGetKey (void);

Get the key for the object which has this script.

47

Appendix A. Linden Library Functions

A.64. lIGetLandOwnerAt

key llGetLandOwnerAt (vector pos);

Returns the key of the land ownergas or NULL_KEY if public.

A.65. lIGetLinkKey

key llGetLinkKey (integer linknum);

Returns the key dinknum in the link set.

A.66. [IGetLinkName

string lIGetLinkName (integer linknum);

Returns the name dihknum in the link set.

A.67. lIGetLinkNumber

integer llGetLinkNumber (void);

Returns what link number in a link set the for the object which has this script. 0 means no link, 1 the root, 2 for
first child, etc.

A.68. lIGetListEntryType

integer lIGetListEntryType (list src , integer index);

Returns thaypeof the variable aindex in src .

48

A.69. lIGetListLength

integer lIGetListLength (list src);

Returns the number of elementssirc .

A.70. llIGetLocalPos

vector llGetLocalPos (void);

Returns the local position of a child object relative to the root.

A.71. liIGetLocalRot

rotation lIGetLocalRot (void);

Returns the local rotation of a child object relative to the root.

A.72. lIGetNextEmail

lIGetNextEmail (string address , string subject);

Get the next waiting email with appropriaededress and/orsubject

not used for filtering.

A.73. liIGetNotecardLine

key llIGetNotecardLine (string name, integer line);

Appendix A. Linden Library Functions

. If the parameters are blank, they are

This function fetches line numbéne of notecarchame and returns the data through tthetaserveevent. The
line count starts at zero. If the requested line is past the end of the notecaiatakerveevent will return the
constanEOFstring. The key returned by this function is a unique identifier which will be supplied to the

dataserveevent in therequested parameter.

49

A.74. lIGetNumberOfSides

key lIGetNumberOfSides (void);

Returns the number of sides of the current which has the script.

A.75. lIGetObjectName

string lIGetObjectName (void);

Returns the name of the object which has the script.

A.76. lIGetOmega

vector llGetOmega (void);

Returns the omega.

A.77. lIGetOwner

key llGetOwner (void);

Returns the owner of the object.

A.78. lIGetOwnerKey

key lIGetOwnerKey (key id);

Returns the owner of objeat .

Appendix A. Linden Library Functions

50

Appendix A. Linden Library Functions

A.79. lIGetPermissions

integer lIGetPermissions (void);

Returns what permissions have been enabled.eg:

integer perm = lIGetPermissions();
if((perm & PERMISSION_DEBIT) == PERMISSION_DEBIT)

{

/I code goes here

}

A.80. lIGetPermissionsKey

key IllGetPermissionsKey (void);

Retuerns avatar that has enabled permissions. Raétiwhg KEY if not enabled.

A.81. lIGetPos

vector llGetPos (void);

Returns the position.

A.82. lIGetRegionFPS

lIGetRegionFPS (void);

Returns the mean region frames per second.

A.83. lIGetRegionName

string lIGetRegionName (void);

51

Returns the current region name.

A.84. lIGetRegionTimeDilation

float llGetRegionTimeDilation (void);

Returns the current time dilation as a float between 0 and 1.

A.85. lIGetRot

rotation lIGetRot (void);

Returns the rotation.

A.86. [IGetScale

vector llGetScale (void);

Returns the scale.

A.87. lIGetScriptName

string lIGetScriptName (void);

Returns the name of this script.

A.88. liIGetStartParameter

integer llGetStartParameter (void);

Appendix A. Linden Library Functions

52

Appendix A. Linden Library Functions

Returns the start parameter passeliRezObject If the object was created from agent inventory, this function
returns O.

A.89. lIGetScriptState

integer llGetScriptState (string name);

Resets TRUE if scrippame is running

A.90. lIGetStatus

integer llGetStatus (integer status);

Returns the value dftatus . The value will be one of thetatus constants

A.91. lIGetSubString

string lIGetSubString (string src , integer start , integer end);

Returns the indicated substring frarc . Thestart andend are inclusive, so 0,length-1 would capture the
entire string and 0,0 would capture the first character. Using negative numbstarfor and/orend causes the
index to count backwards from the length of the string, so 0,-1 would capture the entire string. If start is larger
than end the sub string is the exclusion of the entries, so 6,4 would give the entire string except'for the 5
character.

A.92. lIGetSunDirection

vector llGetSunDirection (void);

Returns the sun direction on the simulator.

53

Appendix A. Linden Library Functions

A.93. lIGetTexture

string llGetTexture (integer face);

Returns the texture déce ifitis found in object inventory.

A.94. lIGetTextureOffset

vector lIGetTextureOffset (integer side);

Returns the texture offset afde in the x and y components of a vector.

A.95. lIGetTextureRot

float llGetTextureRot (integer side);

Returns the texture rotation side .

A.96. lIGetTextureScale

vector llGetTextureScale (integer side);

Returns the texture scale sifle in the x and y components of a vector.

A.97. lIGetTime

float llGetTime (void);

Returns the time in seconds since creation of this script.

54

A.98. lIGetTimeOfDay

float lIGetTimeOfDay (void);

Gets the time in seconds since midnight in Second Life.

A.99. lIGetTorque

vector llGetTorque (void);

Returns the torque if the script is physical.

A.100. lIGetVel

vector llGetVel ();

Returns the velocity.

A.101. liIGetWallclock

float llGetWallclock (void);

Returns the time in seconds since simulator timezone midnight.

A.102. lIGivelnventory

lIGivelnventory (key destination , string inventory);

Give the named inventory item to the keyed avatar or object in the same simulator as the giver. If the recipient is
an avatar, the avatar then follows the normal procedure of accepting or denying the offer. If the recipient is an

Appendix A. Linden Library Functions

object, the same permissions apply as if you were dragging inventory onto the object by hand, ie if
[IAllowInventoryDrop has been called with TRUE, any other object can pass objects to its inventory.

55

Appendix A. Linden Library Functions

A.103. lIGivelnventoryList

lIGivelnventoryList (key destination , String category , list inventory);

Give the list of named inventory items to the keyed avatar or object in the same simulator as the giver. If the
recipient is an avatar, the avatar then follows the normal procedure of accepting or denying the offer. The offered
inventory is then placed in a folder nameategory in the recipients inventory. If the recipient is an object,

the same permissions apply as if you were dragging inventory onto the object by hand, ie if

[IAllowInventoryDrop has been called with TRUE, any other object can pass objects to its inventory.If the
recipient is an object, theategory parameter is ignored.

A.104. lIGiveMoney

lIGiveMoney (key destination , integer amount);
Transferamount from the script owner taestination . This call will fail if PERMISSION_DEBIThas not
been set.

A.105. lIGround

float lIGround (vector offset);

Retuns the ground hieght at the object positicoffset

A.106. lIGroundContour

vector lIGroundContour (vector offset);

Retuns the ground contour at the object positiarffset

A.107. lIGroundNormal

vector lIGroundNormal (vector offset);

56

Appendix A. Linden Library Functions

Retuns the ground contour at the object positiarffset

A.108. lIGroundRepel

lIGroundRepel (float height , integer water , float tau);

Critically damps tcheight if within height * 0.5 of level . Theheight is above ground level ivater
is FALSE or above the higher of land and watewdter is TRUE.

A.109. lIGroundSlope

vector 1lGroundSlope (vector offset);

Returns the ground slope at the object positiaffset

A.110. llinsertString

string llinsertString (string dst , integer position , string src);

Insertssrc intodst atposition and returns the result.

A.111. llinstantMessage

llinstantMessage (key user , string message);

Sendmessage to theuser as an instant message.

A.112. lIKey2Name

string lIKey2Name (key id);

57

If objectid is in the same simulator, return the name of the object.

A.113. lIList2CSV

string IlList2CSV (list src);

Create a string of comma separated values fiistm .

A.114. liList2Float

float IlIList2Float (list src , integer index);

Returns the float ahdex in the listsrc .

A.115. liList2Integer

integer llList2Integer (list src , integer index);

Returns the integer &dex in the listsrc .

A.116. liList2Key

key llList2Key (list src , integer index);

Returns the key anhdex in the listsrc .

A.117. liList2List

list lIList2List (list src , integer start , integer

end);

Appendix A. Linden Library Functions

58

Appendix A. Linden Library Functions

Returns the slice of the list frostart to end from the listsrc as a new list. Thetart andend parameters
are inclusive, so 0,length-1 would copy the entire list and 0,0 would capture the first list entry. Using negative
numbers foistart and/orend causes the index to count backwards from the length of the list, so 0,-1 would
capture the entire list. Btart is larger tharend the list returned is the exclusion of the entries, so 6,4 would
give the entire list except for thé"®ntry.

A.118. lIList2ListStrided

list IllList2ListStrided (list src , integer start , integer end, integer stride);

Copy the strided slice afrc fromstart toend.

A.119. liList2Rot

rotation lIList2Rot (list src , integer index);

Returns the rotation atdex insrc .

A.120. lIList2String

string IllList2String (list src , integer index);

Returns the string ahdex insrc .

A.121. liList2Vector

liList2Vector (list src , integer index);

Returns the string ahdex insrc .

A.122. lIListFindList

integer llListFindList (list src , list test);

59

Appendix A. Linden Library Functions

Returns the position of the first instancete$t in src . Returns -1 itest is notinsrc .

A.123. lIListInsertList

list IllListinsertList (list dest , list src , integer pos);

Returns the list created by insertinge into dest atpos.

A.124. lIListRandomize

list IllListRandomize (list src , integer stride);

Returnssrc randomized into blocks of sizride . If the length ofsrc dividided bystride is non-zero,
this function does not randomize the list.

A.125. lIListSort

list lIListSort (list src , integer stride , integer ascending);

Returnssrc sorted into blocks oftride in ascending order éiscending is TRUE. Note that sort only
works in the head of each sort block is the same type.

A.126. lIListen

integer llListen (integer channel , string name, key id , string msgQ);

Sets a listen event callback forsg onchannel from name and returns an identifier that can be used to
deactivate or remove the listen. Thame, id and/ormsg parameters can be blank to indicate not to filter on

that argument. Channel 0 is the public chat channel that all avatars see as chat text. Channels 1 to 2,147,483,648

are hidden channels that are not sent to avatars.

60

Appendix A. Linden Library Functions

A.127. lIListenControl

lIListenControl (integer number , integer active);

Make a listen event callback active or inactive. Pass in the value returnedfistan to thenumber parameter
to specify which event you are controlling. Useoleanvalues to spcifiactive

A.128. lIListenRemove

liListenRemove (integer number);

Removes a listen event callback. Pass in the value returnediftizten to thenumber parameter to specify
which event you are removing.

A.129. lILookAt

lILookAt (vector target , float strength , float damping);

Cause object to point the forward axis towsadget . Goodstrength values are around half the mass of the
object and goodiamping values are less than 1/16f thestrength . Asymmetrical shapes require smaller
damping . A strength of 0.0 cancels the look at.

A.130. lliLoopSound

lILoopSound (string sound , flaot volume);

Similar tollPlaySound this function plays a sound attached to an object, but will continuously loop that sound
until lIStopSoundbr lIPlaySounds called. Only one sound may be attached to an object at a time. A second call
to llLoopSound with the same key will not restart the sound, but the new volume will be used. This allows
control over the volume of already playing sounds. Setting/theme to O is not the same as calling
[IStopSounda sound with O volume will continue to loop. To restart the sound from the beginning, call
[IStopSoundbefore calling llLoopSound again.

61

Appendix A. Linden Library Functions

A.131. lILoopSoundMaster

lILoopSoundMaster (string sound , flaot volume);

Behaviour is identical tdLoopSound with the addition of marking the source as a "Sync Master", causing

"Slave" sounds to sync to it. If there are multiple masters within a viewer’s interest area, the most audible one (a
function of both distance and volume) will win out as the master. The use of multiple masters within a small area
is unlikely to produce the desired effect.

A.132. lILoopSoundSlave

lILoopSoundSlave (string sound , flaot volume);

Behaviour is identical tiLoopSound unless there is a "Sync Master" present. If a Sync Master is already
playing the Slave sound will begin playing from the same point the master is in its loop syncronizing the loop
points of both sounds. If a Sync Master is started when the Slave is already playing, the Slave will skip to the
correct position to sync with the Master.

A.133. lIMakeExplosion

lIMakeExplosion (integer particles , float scale , float velocity , float lifetime
float arc, string texture , vector offset);

Make a round explosion of particles usitexture from the object’s inventory.

A.134. [IMakeFire

lIMakeFire (integer particles , float scale , float velocity , float lifetime , float
arc , string texture , vector offset);

Make fire particles usintexture from the object’s inventory.

62

Appendix A. Linden Library Functions

A.135. lIMakeFountain

IIMakeFountain (integer particles , float scale , float velocity , float lifetime ,
float arc, string texture , vector offset);

Make a fountain of particles usirtgxture from the object’s inventory.

A.136. lIMakeSmoke

lIMakeSmoke (integer particles , float scale , float velocity , float lifetime , float
arc , string texture , vector offset);

Make smoky particles usingxture from the object’s inventory.

A.137. lIMessagelinked

lIMessageLinked (integer linknum , integer num, string str , key id);

Sendswum, str , andid to members of the link set. THknum parameter is either the linked number
available throughiGetLinkNumberor alink constant

A.138. lIMinEventDelay

lIMinEventDelay (float delay);

Set the minimum time between events being handled.

A.139. lIModifyLand

lIModifyLand (integer action , integer size);

Modify land withaction onsize area. The parameters can be chosen frontathe constants

63

Appendix A. Linden Library Functions

A.140. lIMoveToTarget

lIMoveToTarget (vector target , float float tau);

Critically damp to positioriarget intau seconds if the script is physical. Gotall values are greater than
0.2. Atau of 0.0 stops the critical damping.

A.141. lIOffsetTexture

||OffsetTexture (float offset s , float offset_t , integer face);

Sets the texture s and t offsetsfate . If face is ALL_SIDESthis function sets the texture offsets for all faces.

A.142. ll0verMyLand

integer llOverMyLand (key id);

ReturnsTRUEif id is over land owned by the object ownBALSE otherwise.

A.143. lIParseString2List

list llParseString2List (string src , list separators , list spacers);

Breakssrc into a list, discarding anything iseparators , keeping any entry ispacers . The
separators andspacers must be lists of strings with a maximum of 8 entries each. So, if you had made the
call:

lIParseString2List("Parsethisnow! | dare:you to.", ['this", """, " "], [":""]);

You would get the list:

["Parse", "nOW", nIu’ "dal’e", u:u, "y0U", utou]

64

Appendix A. Linden Library Functions

A.144. lIParticleSystem

lIParticleSystem (list parameters);

Makes a particle system based on the parameter listp@iteemeters are specified as an ordered list of
parameter and value. Valid parameters and their expected values can be founghanitie system constants
Here is a simple example:

lIParticleSystem([PSYS_PART_FLAGS, PSYS_PART_WIND_MASK,
PSYS_PART_START _COLOR, <1,0,0>,
PSYS_SRC_PATTERN, PSYS_SRC_PATTERN_EXPLODE]);

A.145. lIPassCollisions

lIPassCollisions (integer pass);

If pass is TRUE, land and object collisions are passed from children on to parents.

A.146. lIPassTouches

lIPassTouches (integer pass);

If pass is TRUE, touches are passed from children on to parents.

A.147. lIPlaySound

lIPlaySound (string sound , float volume);

Plays a sound once. The sound will be attached to an object and follow object movement. Only one sound may
be attached to an object at a time, and attaching a new sound or di&timgSoundwill stop the previously

attached sound. A second call to lIPlaySound with the ssmed will not restart the sound, but the new

volume will be used, which allows control over the volume of already playing sounds. To restart the sound from
the beginning, callStopSoundoefore calling lIPlaySound again.

65

Appendix A. Linden Library Functions

A.148. lIPlaySoundSlave

lIPlaySoundSlave (string sound , float volume);

Behaviour is identical to lIPlaySound, unless there is a "Sync Master" present. If a Sync Master is already
playing the Slave sound will not be played until the Master hits its loop point and returns to the beginning.
lIPlaySoundSlave will play the sound exactly once; if it is desired to have the sound play every time the Master
loops, either us8LoopSoundSlavevith extra silence padded on the end of the sound or ensure that
[IPlaySoundSlave is called at least once per loop of the Master.

A.149. lIPointAt

lIPointAt (vector pos);

Make avatar that owns object pointfis .

A.150. lIPow

lIPow (float base, float exp);

Returnsbase raised to theexp .

A.151. lIPreloadSound

lIPreloadSound (string sound);

Preloadsound from object inventory on nearby viewers.

A.152. lIPushObject

lIPushObject (key id , vector impulse , vector angular_impulse , integer local);

Appliesimpulse andangular_impulse to objectid .

66

Appendix A. Linden Library Functions

A.153. lIReleaseControls

lIReleaseControls (key avatar);

Stop taking inputs fronavatar

A.154. lIRemoteLoadScript

lIRemoteLoadScript (key target , string name, integer running , integer param);

If the owner of the object this script is attached can motiifget and the objects are in the same region, copy
scriptname ontotarget , if running == TRUE, start the script witharam . If name already exists on
target |, itis replaced.

A.155. IRemovelnventory

lIRemovelnventory (string inventory);

Remve the nammventory item from the object inventory.

A.156. IRemoveVehicleFlags

IIRemoveVehicleFlags (integer flags);

Sets the vehiclags to FALSE. Valid parameters can be found in thehicle flags constantection.

A.157. lIRequestAgentData

key IIRequestAgentData (key id , integer data);

This function requests data about agient If and when the information is collected, tbataserveevent is
called with the returned key returned from this function passed iretpgested parameter. See tregent data
constantdgor details about valid values afata and what each will return in theataserveevent.

67

Appendix A. Linden Library Functions

A.158. [IRequestinventoryData

key IIRequestinventoryData (string name);

Requests data from object inventory iteame. When data is available thaataserveevent will be raised with

the key returned from this function in tliequested parameter. The only request currently implemented is to
request data from landmarks, where the data returned is in the form "<float, float, float>" which can be cast to a
vector. This position is in region local coordinates.

A.159. [IRequestPermissions

integer lIRequestPermissions (key avatar , iteger perm);

Ask avatar to allow the script to dperm. Theperm parameter should beermission constaniultiple

permissions can be requested simultaneously by or'ing the constants together. Many of the permissions requests
can only go to object owner. This call will not stop script execution - if the specified avatar grants the requested
permissions, theun_time_permissionsvent will be called.

A.160. lIResetScript

lIResetScript (void);

Resets this script.

A.161. [IResetOtherScript

lIResetOtherScript (string name);

Resets the scriptame.

A.162. lIResetTime

lIResetTime (void);

68

Appendix A. Linden Library Functions

Sets the internal timer to zero.

A.163. lIRezObject

lIRezObject (string inventory , vector pos, vector vel , rotation rot , integer param);

Creates object'miventory object at positiorpos with velocityvel and rotatiorrot . Theparam value
will be available to the newly created object in thie_rezevent or through théGetStartParametdibrary
function. Thevel parameter is ignored if the rezzed object is not physical.

A.164. lIRot2Angle

float IlIRot2Angle (rotation rot);

Returns the rotation angle representeddy .

A.165. [IRot2Axis

vector |lIRot2Axis (rotation rot);

Returns the rotation axis representedbly .

A.166. lIRot2Euler

vector lIRot2Euler (rotation rot);

Returns the Euler Angle representatiorraff .

A.167. [IRot2Fwd

vector IIRot2Fwd (rotation rot);

69

Returns the forward axis representedroy .

A.168. [IRot2Left

lIRot2Left (rotation rot);

Returns the left axis representedroy .

A.169. lIRot2Up

lIRot2Up (rotation rot);

Returns the up axis representedrby .

A.170. lIRotBetween

rotation lIRotBetween (vector a, vector

Returns the rotation needed to rotatéo b.

A.171. lIRotLoOKAt

lIRotLoOkAt (rotation rot , float strength

Cause object to rotate tot . Goodstrength

b);

, float

damping values are less than 1/10f thestrength

strength of 0.0 cancels the look at.

A.172. lIRotTarget

integer lIRotTarget (rotation rot , float

error);

Appendix A. Linden Library Functions

damping);

values are around half the mass of the object and good
. Asymmetrical shapes require smaldlmping . A

70

Appendix A. Linden Library Functions

Set object rotation withierror ~ of rotation as a rotational target and return an integer number for the
target. The number can be usedliRotTargetRemove

A.173. lIRotTargetRemove

lIRotTargetRemove (integer number);

Remove rotational targetumber .

A.174. lIRotateTexture

|IRotate Texture (float radians , integer face);

Sets the texture rotation édice toradians . If face ALL_SIDES, rotate the texture of all faces.

A.175. lIRound

integer lIRound (float val);

returnsval rounded to the nearest integer.

A.176. lISameGroup

integer lISameGroup (key id);

ReturnsTRUE if the object or ageid is in the same simulator and has the same active group as this object.
Otherwise, returnBALSE.

A.177. lISay

lISay (integer channel , string text);

71

Appendix A. Linden Library Functions

Saytext onchannel . Channel 0 is the public chat channel that all avatars see as chat text. Channels 1 to
2,147,483,648 are private channels that are not sent to avatars but other scripts can listen for thitthigfiethe
api.

A.178. lIScaleTexture

lIScaleTexture (integer scale_s , integer scale_t , integer face);

Sets the texture s and t scaledade toscale_s andscale_t respectively. If face i®\LL_SIDES, scale
the texture to all faces.

A.179. lIScriptDanger

integer lIScriptDanger (vector pos);

Returns true if pos is over public land, land that doesn’t allow everyone to edit and build, or land that doesn’t
allow outside scripts.

A.180. lISensor

lISensor (string name, key id , integer type , float range , float arc);

Performs a single scan foame andid with type within range meters andirc radians of forward vector.
Specifying a blank name &ULL_KEY id will not filter results for any particular name or id A range of 0.0
does not perform a scan. Thgpe parameter should be aject type constandaue.

A.181. lISensorRemove

lISensorRemove (void);

Remves the sensor.

72

Appendix A. Linden Library Functions

A.182. lISensorRepeat

lISensorRepeat (string name, key id , integer type , float range , float arc , float
rate);

Performs a single scan foame andid with type within range meters andwrc radians of forward vector
and repeats evemnate seconds. Specifying a blank nameNldLL_KEY id will not filter results for any
particular name or id A range of 0.0 cancels the scan.type parameter should be aject type constant
vlaue.

A.183. lISetAlpha

lISetAlpha (float alpha , integer face);

Sets the alpha value féace . If face iSALL_SIDES, set the alpha to all faces. Thépha value is interpreted
as an opacity percentage - 1.0 is fully opaque, and 0.2 is mostly transparent. This api wilbidrap values
less 0.1to .1 and greater than 1.0 to 1.

A.184. lISetBuoyancy

lISetBuoyancy (float buoyancy);

Set the object buoyancy. A value of 0 is nhone, less than 1.0 sinks, 1.0 floats, and greater than 1.0 rises.

A.185. lISetCameraAtOffset

lISetCameraAtOffset (vector offset);

Sets the camera at offset used in this object if an avatar sits on it.

A.186. lISetCameraEyeOffset

lISetCameraEyeOffset (vector offset);

73

Appendix A. Linden Library Functions

Sets the camera eye offset used in this object if an avatar sits on it.

A.187. lISetColor

lISetColor (vector color , integer face);

Sets thecolor of face . If face iSALL_SIDES, set the alpha to all faces.

A.188. lISetDamage

lISetbamage (float damage);

Sets the amount of damage that will be done to an object that this object hits. This object will be destoyed on
damaging another object.

A.189. lISetForce

lISetForce (vector force , integer local);

If the object is physical, this function sets tligce . The vector is in loal coordinates if local TSRUE, global if
FALSE.

A.190. lISetForceAndTorque

lISetForceAndTorque (vector force , vector torque , integer local);

If the object is physical, this function sets tfoece andtorque . The vectors are in loal coordinates if local is
TRUE, global if FALSE.

A.191. lISetHoverHeight

lISetHoverHeight (float height , float water , float tau);

74

Appendix A. Linden Library Functions

Critically damps to a height. The height is above ground and wateatiér is TRUE

A.192. lISetLinkColor

lISetLinkColor (integer linknumber , vector color , integer face);

Sets thecolor of the linked child specified biinknumber . A value of 0 means no link, 1 the root, 2 for first
child, etc. Iflinknumber is ALL_SIDES, set the color of all objects in the linked setfdte is
ALL_SIDES, set the color of all faces.

A.193. lISetObjectName

lISetObjectName (string name);

Sets the object name tame.

A.194. lISetPos

lISetPos (vector pos);

If the object is not physical, this function sets the position in region coordinates. If the object is a child, the
position is treated as root relative and the linked set is adjusted.

A.195. [ISetRot

lISetRot (rotation rot);

If the object is not physical, this function sets the rotation. If the object is a child, the position is treated as root
relative and the linked set is adjusted.

A.196. lISetScale

lISetScale (vector scale);

75

Appendix A. Linden Library Functions

Sets the object scale.

A.197. lISetScriptState

lISetScriptState (string name, integer run);

Control the state of a script on the object.

A.198. lISetSitText

funcdef (string text);

Displaystext rather than sit in viewer pie menu.

A.199. lISetSoundQueueing

lISetSoundQueueing (integer queue);

Sets whether successive calldlRlaySoundllLoopSound etc., (attached sounds) interrupt the playing sound.
The default for objects iIBALSE. Setting this value t@d RUE will make the sound wait until the current playing
sound reaches its end. The queue is one level deep.

A.200. lISetStatus

lISetStatus (integer status , integer value);

Sets thestatus to value . Usestatus constanfsr the values obtatus

A.201. [ISetText

lISetText (string text , vector color , float alpha);

76

Appendix A. Linden Library Functions

Sets text that floats above objecttéxt , using the specifiedolor andalpha .

A.202. lISetTexture

lISetTexture (string texture , integer face);

Sets thaexture from object inventory oface . If face iSALL_SIDES, set the texture to all faces.

A.203. lISetTextureAnim

lISetTextureAnim (integer mode, integer face , integer sizex , integer sizey , float
start , float length , float rate);

Animates a texture by setting the texture scale and offset. The mode is a nagtuoé animation constants
You can only have one texture animation on an object, calling lISetTextureAnim more than once on an object
will reset it.

You can only do one traditional animatidROTATE or SCALE at a time, you cannot combine masks. In the case
of ROTATE or SCALE, sizex andsizey areignored, andtart andlength are used as the start and
length values of the animation. For rotatimtart andlength are in radians.

Theface specified which face to animate.fice is ALL_SIDES, all textures on the object are animated.

Thesizex andsizey describe the layout of the frames within the textwigex specifies how many
horizontal frames ansglizey is how many vertical frames.

start is the frame number to begin the animation on. Frames are numbered from left to right, top to bottom,
starting at 0.

length is the number of frames to animate. 0 means to animate all frames after the start frame.

rate is the frame rate to animate at. 1.0 means 1 frame per second, 10.0 means 10 frames per second, etc.

A.204. lISetTimerEvent

lISetTimerEvent (float sec);

77

Appendix A. Linden Library Functions

Sets theimer event to be triggered evesec seconds. Passing in 0.0 stops furttierer events.

A.205. lISetTorque

lISetTorque (vector torque , integer local);

If the object is physical, this function sets ttoeque . The vector is in loal coordinates if local T®RUE, global
if FALSE.

A.206. lISetTouchText

lISetTouchText (string text);

Displaystext in viewer pie menu that acts as a touch.

A.207. lISetVehicleFlags

lISetVehicleFlags (integer flags);

Sets the vehiclags to TRUE. Valid parameters can be found in thehicle flags constantection.

A.208. lISetVehicleFloatParam

lISetVehicleFloatParam (integer param_name, float param_value);

Sets the vehicle floating point parameparam_name to param_value . Valid parameters and their expected
values can be found in theshicle parameter constargsction.

A.2009. lISetVehicleType

lISetVehicleType (integer type);

78

Appendix A. Linden Library Functions

Activates the vehicle action and choose vehtgfge . Valid types and an explination of their characteristeics
can be found in theehicle type constantection.

A.210. lISetVehicleRotationParam

lISetVehicleRotationParam (integer param_name, rotation param_value);

Sets the vehicle rotation parameparram_name to param_value . Valid parameters can be found in the
vehicle parameter constargsction.

A.211. lISetVehicleVectorParam

lISetVehicleVectorParam (integer param_name, vector param_value);

Sets the vehicle vector parameparam_name to param_value . Valid parameters can be found in the
vehicle paramter constargsction.

A.212. lIShout

lIShout (integer channel , string text);

Shouttext onchannel . Channel O is the public chat channel that all avatars see as chat text. Channels 1 to
2,147,483,648 are private channels that are not sent to avatars but other scripts can listen for thithuigiethe

api.

A.213. lISin

float 1ISin (float theta);

Returns the sine dheta in radians.

79

Appendix A. Linden Library Functions

A.214. lISitTarget

lISitTarget (vector offset , rotation rot);

Set the sit location for this object. tfifset == ZERO_VECTORCclear the sit target.

A.215. lISleep

lISleep (float sec);

Puts the script to sleep feec seconds.

A.216. lISqrt

float lISqrt (float val);

Returns the square root@él . If val is less than 0.0, this function returns 0.0 and raises a math runtime error.

A.217. lIStartAnimation

lIStartAnimation (string anim);

This function starts animaticanim for the avatar that owns the object.

Valid strings for anim

hold_R_bazooka
hold_R_handgun
hold_R_rifle

Holds the appropriately shaped weapon in the right hand. Automatically switches to the aims (below) when
user enters mouse look

aim_R_bazooka
aim_R_handgun
aim_R_rifle

Aims the appropriately shaped weapon along the direction the avatar is looking.

80

Appendix A. Linden Library Functions

away

Flops over in "away from keyboard" state.

backflip

Performs a backflip.

bow

Bows at waist.

brush

Brushes dirt from shirt.

clap

Applauds.

courtbow

Bows with a courtly flourish.

crouch

Crouches in place.

crouchwalk
Walks in place while crouching.
dancel
dance2
dance3
dance4
danceb
dance6

dance7
dance8

Various dance maneuvers.

falldown

Freefall falling animation.

female_walk

Walks with hip sway.

fly
Flies forward.

flyslow

Flies forward at a less agressive angle.

hello

Waves.

81

hold_throw_R
Hold object in right hand, prepared to throw it.

hover

Hovers in place.

hover_down

Pretends to hover straight down.

hover_up

Pretends to hover straight up.
jump

Midair jump position.
kick_roundhouse_R

Roundhouse kick with right leg.

land

Lands after flying.
prejump

Prepares to jump.

punch_L
Punch with left hand.

punch_R
Punch with right hand.

punch_onetwo

Punch with one hand then the other.

run

Runs in place.

salute
Salutes with right hand.
sit
Sits on object at knee height.

sit_ground

Sits down on ground.

slowwalk

Walks in place slowly.

Appendix A. Linden Library Functions

82

Appendix A. Linden Library Functions

smoke_idle

Leans on imaginary prop while holding cigarette.

smoke_inhale

Leans on imaginary prop and smokes a cigarette.

smoke_throw_down

Leans on imaginary prop, throws down a cigarette, and stamps it out.

shapshot

Pantomimes taking a picture.

soft_land

Stumbles a bit as if landing.

stand

Stands in place.

standup

Falls on face and stands up.

stride

Legs extended as if stepping off of a ledge.

sword_strike R

Strike with sword in right hand.

talk

Head moves as if talking.

target

Right arm points where avatar is looking (used automatically with aim anims).

throw_R
Throws object in right hand.

tryon_shirt

Turns around and models a new shirt.

turnleft

Pretends to turn left.

turnright

Pretends to turn right.

type
Makes typing motion.

83

uphillwalk
Walks uphill in place.

walk

Walks in place.

whisper
Whispers behind hand.

whistle

Whistles with hands in mouth.

yell
Shouts between cupped hands.

A.218. [IStopAnimation

lIStopAnimation (string anim);

Stop animatioranim for avatar that owns object.

A.219. lIStopHover

lIStopHover (void);

Stop hover to a height.

A.220. lIStopLookAt

lIStopLookAt (void);

Stop causing object to look at target.

A.221. lIStopMoveToTarget

lIStopMoveToTarget (void);

Appendix A. Linden Library Functions

84

Appendix A. Linden Library Functions

Stops critically damped motion.

A.222. lIStopPointAt

lIStopPointAt (void);

Stop avatar that owns object pointing.

A.223. lIStopSound

lIStopSound (void);

Stops a currently playing attached sound started iaySoundor lILoopSound Has no effect on sounds
started withlITriggerSound

A.224. lIStringLength

integer lIStringLength (string src);

Returns the number of charactersic .

A.225. lISubStringindex

integer lISubStringIindex (string source , string pattern);

Finds index in source where pattern first appears. Returns -1 if no match is found found.

A.226. lITakeControls

lITakeControls (integer controls , integer accept , integer pass_on);

85

If (accept
to avatar.

== (controls

A.227. lITan

float IlITan (float theta);

Returns the tangent tiieta radians.
A.228. llTarget
integer llTarget (vector position , float range);

Set object position withimange of position

A.229. lITargetOmega

lITargetOmega (vector axis , float spinrate , float gain);

Attempt to spin aspinrate with strengthgain onaxis . A spinrate
function always works in object local coordinates.

A.230. lITargetRemove

lITargetRemove (integer tnumber);

Remove target numbénumber .

A.231. lITeleportAgentHome

lITeleportAgentHome (key id);

Appendix A. Linden Library Functions

& input)), send input to object. If the boole@ass_on is TRUE, also send input

as a target and returns an integer ID for the target.

of 0.0 cancels the spin. This

86

Appendix A. Linden Library Functions

Teleport agent on the owner’s land to agent’s home location.

A.232. lIToLower

lIToLower ();

A.233. [IToUpper

string lIToUpper (string src);

Returnssrc in all lower case.

A.234. lITriggerSound

lITriggerSound (string sound , float volume);

Plays a transient sound NOT attached to an object. The sound plays from a stationary position located at the
center of the object at the time of the trigger. There is no limit to the number of triggered sounds which can be
generated by an object, and callifitriggerSounddoes not affect the attached sounds createltPbgySound
andllLoopSound This is very useful for things like collision noises, explosions, etc. There is no way to stop or
alter the volume of a sound triggered by this function.

A.235. lITriggerSoundLimited

lITriggerSoundLimited (string sound , float volume , vector tne , vector bsw);

Plays a transient sound NOT attached to an object with its audible range limited by the axis aligned bounding
box define bytne (top-north-eash) anbsw (bottom-south-west). The sound plays from a stationary position
located at the center of the object at the time of the trigger. There is no limit to the number of triggered sounds
which can be generated by an object, and callifigggerSounddoes not affect the attached sounds created by
[IPlaySoundandllLoopSound This is very useful for things like collision noises, explosions, etc. There is ho
way to stop or alter the volume of a sound triggered by this function.

87

Appendix A. Linden Library Functions

A.236. llUnSit

lUnSit (key id);

If agent identified byid is sitting on the object the script is attached to or is over land owned by the objects
owner, the agent is forced to stand up.

A.237. lIVecDist

float lIVecDist (vector a, vector b);

Returns the distance fromto b

A.238. lIVecMag

float IIVecMag (vector vec);

Returns the magnitude wec .

A.239. lIVecNorm

vector IlVecNorm (vector vec);

Returns normalizedec .

A.240. lIVolumeDetect

IIVolumeDetect (integer detect);

When detect = TRUE, this makes the entire link set the script is attached to phantom but if another object
interpenetrates it, it will get a collision_start event. When an object stops interpenetrating, a collision_end event
is generated. While the other is interpenetrating, collision events are NOT generated. The script must be applied
to the root object of the link set to get the collision events. Collision filters work normally.

88

Appendix A. Linden Library Functions

A.241. lIWater

float llWater (vector offset);

Returns the water height at the object positiooffset

A.242. lIWhisper

lIWhisper (integer channel , string text);

Whispertext onchannel . Channel 0 is the public chat channel that all avatars see as chat text. Channels 1 to
2,147,483,648 are private channels that are not sent to avatars but other scripts can listen for thitthigiethe
api.

A.243. lIWind

vector llWind (vector offset);

Returns the wind velocity below the object positionffset

89

Appendix B. Events

Every state must have at least one handler. You can choose to handle an event by defining one of the the reserved
event handlers named here.

B.1. at rot_target

at_rot_target (integer number , rotation target_rotation , rotation our_rotation);

This event is triggered when a script comes within a defined angle of a target rotation. The range is set by a call
to lIRotTarget

B.2. attach

attach (key attached);

This event is triggered whenever a object with this script is attached or detached from an avatar. If it is attached,
attached is the key of the avatar it is attached to, otherwise attachikilis KEY .

B.3. changed

changed (integer changed);

Triggered when various events change the object.cHamged will be a bitfield ofchange constants

B.4. collision

collision (integer total_number);

This event is raised while another object is colliding with the object the script is attached to. The number of
detected objects is passed to the script. Information on those objects may be gatheretidéabd*library
functions. (Collisions are also generated if a user walks into an object.)

90

Appendix B. Events

B.5. collision_end

collision_end (integer total_number);

This event is raised when another object stops colliding with the object the script is attached to. The number of
detected objects is passed to the script. Information on those objects may be gatheretidéebed*library
functions. (Collisions are also generated if a user walks into an object.)

B.6. collision_start

collision_start (integer total_number);

This event is raised when another object begins to collide with the object the script is attached to. The number of
detected objects is passed to the script. Information on those objects may be gatheretidéebed*library
functions. (Collisions are also generated if a user walks into an object.)

B.7. control

control (key name, integer levels , integer edges);

Once a script has the ability to grab control inputs from the avatar, this event will be used to pass the commands
into the script. Thdevels andedges are bitfields ofcontrol constsants

B.8. dataserver

dataserver (key requested , string data);

This event is triggered when the requested data is returned to the script. Data may be requested by the
[IRequestAgentDatahellRequestinventoryDatand thdlGetNotecardLindunction calls.

B.9. emall

email (string time , string address , string subject , string body , integer remaining);

91

Appendix B. Events

This event is triggered when an email sent to this script arrivesrdinaining tells how many more emails
are known as still pending.

B.10. land_collision

land_collision (vector position);

This event is raised when the object the script is attached to is colliding with the ground.

B.11. land_collision_end

land_collision_end (vector position);

This event is raised when the object the script is attached to stops colliding with the ground.

B.12. land_collision_start

land_collision_start (vector position);

This event is raised when the object the script is attached to begins to collide with the ground.

B.13. link_message

link_message (integer sender_number , integer number , string message, key id);

Triggered when object receives a link messagdlMassageLinkedibrary function call.

B.14. listen

listen (integer channel , string name, key id , string message);

92

Appendix B. Events

This event is raised whenever a chat message matching the constraints passétigteheommand is heard.
Thenameandid of the speaker as well as theessage are passed in as parameters. Channel 0 is the public

chat channel that all avatars see as chat text. Channels 1 through 2,147,483,648 are private channels that are not
sent to avatars but other scripts can listen on those channels.

B.15. money

money(key giver , integer amount);

This event is triggered when usgiver has given ammount of Linden dollars to the object.

B.16. moving_end

moving_end (void);

Triggered whenever a object with this script stops moving.

B.17. moving_start

moving_start (void);

Triggered whenever a object with this script starts moving.

B.18. no_sensor

no_sensor (void);

This event is raised when sensors are active (vidlBansorlibrary call) but are not sensing anything.

B.19. not_at rot_target

not_at_rot_target (void);

93

Appendix B. Events

When atarget is set via thkRotTargetlibrary call, but the script is outside the specified angle this event is raised.

B.20. not_at_target

not_at_target (void);

When a target is set via thdargetlibrary call, but the script is outside the specified range this event is raised.

B.21. object _rez

object_rez (key id);

Triggered when object rez-es in another object from its inventory vilRez Objectapi. Theid is the globally
unique key for the object.

B.22.0n _rez

on_rez (integer start_param);

Triggered whenever a object is rez-ed from inventory or by another objecstaiteparam is the parameter
passed in from the call #tRezObject

B.23. run_time_permissions

run_time_permissions (integer permissions);

Scripts need permission from either the owner or the avatar they wish to act on before they perform certain
functions, such as debiting money from their owner’s account, triggering an animation on an avatar, or capturing
control inputs. ThélRequestPermissionibrary function is used to request these permissions and the various
permissions integer constaran be supplied. The integer returned to this event handler contains the current set
of permissions flags, so ffermissions eqal 0 then no permissions are set.

94

Appendix B. Events

B.24. sensor

sensor (integer total_number);

This event is raised whenever objects matching the constraints b&#resorcommand are detected. The
number of detected objects is passed to the script itotia® humber parameter. Information on those
objects may be gathered via thieetected*library functions.

B.25. state_entry

state_entry (void);

The state_entry event occurs whenever a new state is entered, including program start, and is always the first
event handled.

B.26. state_exit

state_exit (void);

The state_exit event occurs whenever the state command is used to transition to another state. It is handled
before the new state’s state_entry event.

B.27. timer

timer (void);

This event is raised at regular intervals set bylt8etTimerEventibrary function.

B.28. touch

touch (integer total_number);

95

Appendix B. Events

This event is raised while a user is touching the object the script is attached to. The number of touching objects is
passed to the script in thetal_ number parameter. Information on those objects may be gathered via the
[IDetected*library functions.

B.29. touch_end

touch_end (integer total_number);

This event is raised when a user stops touching the object the script is attached to. The number of touching
objects is passed to the script in tieégal number parameter. Information on those objects may be gathered
via thellDetected*library functions.

B.30. touch_start

touch_start (integer total_number);

This event is raised when a user first touches the object the script is attached to. The number of touching objects
is passed to the script in thetal_number parameter. Information on those objects may be gathered via the
[IDetected*library functions.

96

Appendix C. Constants

To ease scripting, many useful constants are defined by LSL.

C.1. Boolean Constants

The boolean constants represent the values for TRUE and FALSE. LSL represents booleans as integer values 1
and 0 respectively. Since there is no boolean type these constants act as a scripting aid usually employed for
testing variables which conceptually represent boolean values.

- TRUE
+ FALSE

C.2. Status Constants

The status constants are used inltBetStatusandliGetStatudibrary calls. These constants can be bitwise or'ed
together when calling the library functions to set the same value to more than one status flag

Status Constants

STATUS_PHYSICS

Controls whether the object moves physically. This controls the same flag that the ui checkbox for
'Physical’ controls. The default is FALSE.

STATUS_PHANTOM

Controls whether the object collides or not. Setting the value to TRUE makes the object non-colliding with
all objects. Itis a good idea to use this for most objects that move or rotate, but are non-physical. It is also
useful for simulating volumetric lighting. The default is FALSE.

STATUS_ROTATE_X
STATUS_ROTATE_Y
STATUS_ROTATE_Z

Controls whether the object can physically rotate around the specific axis or not. This flag has no meaning
for non-physical objects. Set the value to FALSE if you want to disable rotation around that axis. The
default is TRUE for a physical object.

A useful example to think about when visualizing the effect is a 'sit-and-spin’ device. They spin around the
Z axis (up) but not around the X or Y axis.

97

Appendix C. Constants

STATUS_BLOCK_GRAB

Controls whether the object can be grabbed. A grab is the default action when in third person, and is
available as the 'hand’ tool in build mode. This is useful for physical objects that you don’t want other
people to be able to trivially disturb. The default if FALSE

STATUS_SANDBOX

Controls whether the object can cross region boundaries and move more than 20 meters from its creation
point. The default if FALSE.

STATUS_DIE_AT_EDGE

Controls whether the object is returned to the owner’s inventory if it wanders off the edge of the world. It is
useful to set this status TRUE for things like bullets or rockets. The default is TRUE

C.3. Object Type Constants

These constants can be combined using the binary ’'|' operator and are useliSeiiserand related calls.

Object Type Constants

AGENT

Obijects in world that are agents.

ACTIVE

Objects in world that are running a script or currently pysically moving.

PASSIVE

Static in-world objects.

SCRIPTED

Scripted in-world objects.

C.4. Permission Constants

The permission constants are used for passing valu#gaquestPermissiongeterming the value of
lIGetPermissionsand explicitly passed to threin_time_permissionsvent. For many of the basic library

functions to work, a specific permission must be enabled. The permission constants can be or'ed together to be
used in conjunction.

Permission Constants

PERMISSION_DEBIT

If this permission is enabled, the object can successfullyliGilleMoneyto debit the owner’s account.

PERMISSION_TAKE_CONTROLS

If this permission enabled, the object can successfully callTakeControldibray call.

98

Appendix C. Constants

PERMISSION_REMAP_CONTROLS

(not yet implemented)

PERMISSION_TRIGGER_ANIMATION

If this permission is enabled, the object can successfullyli&#irtAnimationfor the avatar that owns this
object.

PERMISSION_ATTACH

If this permission is enabled, the object can successfullylédathchToAvatarto attach to the given avatar.

PERMISSION_RELEASE_OWNERSHIP

(not yet implemented)

PERMISSION_CHANGE_LINKS

If this permission is enabled, the object can successfullyiGattateLink lIBreakLink, and
lIBreakAllLinks to change links to other objects.

PERMISSION_CHANGE_JOINTS

(not yet implemented)

PERMISSION_CHANGE_PERMISSIONS

(not yet implemented)

C.5. Inventory Constants

These constants can be used to refer to a specific inventory type in diBgtimventoryNumber
andiGetlnventoryName

Inventory Constants

INVENTORY_TEXTURE
INVENTORY_SOUND
INVENTORY_OBJECT
INVENTORY_SCRIPT
INVENTORY_LANDMARK
INVENTORY_CLOTHING
INVENTORY_NOTECARD
INVENTORY_BODYPART

Each constant refers to the named type of inventory.

C.6. Attachment Constants

These constants are used to refer to attachment points in cAstechToAvatar

99

Appendix C. Constants
Attachment Constants

ATTACH_CHEST

Attach to the avatar chest.

ATTACH_HEAD

Attach to the avatar head.

ATTACH_LSHOULDER

Attach to the avatar left shoulder.

ATTACH_RSHOULDER

Attach to the avatar right shoulder.

ATTACH_LHAND

Attach to the avatar left hand.

ATTACH_RHAND
Attach to the avatar right hand.

ATTACH_LFOOT

Attach to the avatar left foot.

ATTACH_RFOOT

Attach to the avatar right foot.

ATTACH_BACK

Attach to the avatar back.

ATTACH_PELVIS

Attach to the avatar pelvis.

ATTACH_MOUTH

Attach to the avatar mouth.

ATTACH_CHIN

Attach to the avatar chin.

ATTACH_LEAR

Attach to the avatar left ear.

ATTACH_REAR

Attach to the avatar right ear.

ATTACH_LEYE

Attach to the avatar left eye.

ATTACH_REYE
Attach to the avatar right eye.

100

ATTACH_NOSE

Attach to the avatar nose.

ATTACH_RUARM

Attach to the avatar right upper arm.

ATTACH_RLARM

Attach to the avatar right lower arm.

ATTACH_LUARM

Attach to the avatar left upper arm.

ATTACH_LLARM

Attach to the avatar left lower arm.

ATTACH_RHIP
Attach to the avatar right hip.

ATTACH_RULEG
Attach to the avatar right upper leg.

ATTACH_RLLEG

Attach to the avatar right lower leg.

ATTACH_LHIP
Attach to the avatar left hip.

ATTACH_LULEG

Attach to the avatar lower upper leg.

ATTACH_LLLEG

Attach to the avatar lower left leg.

ATTACH_BELLY
Attach to the avatar belly.

ATTACH_RPEC

Attach to the avatar right pectoral.

ATTACH_LPEC

Attach to the avatar left pectoral.

C.7. Land Constants

Appendix C. Constants

These constants are only used in call§ModifyLand. The constants are equivalent to the similarly labelled

user interface elements for editing land in the viewer.

101

Land Constants

LAND_LEVEL

Action to level the land.

LAND_RAISE

Action to raise the land.

LAND_LOWER

Action to lower the land.

LAND_SMALL_BRUSH

Use a small brush size.

LAND_MEDIUM_BRUSH

Use a medium brush size.

LAND_LARGE_BRUSH

Use a large brush size.

C.8. Link Constants

These constants are used in calli$@tLinkColorandlIMessageLinked

Link Constants

LINK_SET

This targets every object in the linked set.

LINK_ROOT

This targets the root of the linked set.

LINK_ALL_OTHERS

This targets every object in the linked set except the object with the script.

LINK_ALL_CHILDREN

This targets every object except the root in the linked set.

C.9. Control Constants

These constants are usedlifakeControlsas well as theontrolevent handler.

Appendix C. Constants

102

Control Constants

CONTROL_FWD

Test for the avatar move forward control.

CONTROL_BACK

Test for the avatar move back control.

CONTROL_LEFT

Test for the avatar move left control.

CONTROL_RIGHT

Test for the avatar move right control.

CONTROL_ROT_LEFT

Test for the avatar rotate left control.

CONTROL_ROT_RIGHT

Test for the avatar rotate right control.

CONTROL_UP

Test for the avatar move up control.

CONTROL_DOWN

Test for the avatar move down control.

CONTROL_LBUTTON

Test for the avatar left button control.

CONTROL_ML_BUTTON

Test for the avatar left button control while in mouse look.

C.10. Change Constants

These constants are used in theingedevent handler.

Change Constants

CHANGED_INVENTORY

The object inventory has changed.

CHANGED_ALLOWED_DROP

Appendix C. Constants

The object inventory has changed because an item was added throligiitkdnventoryDrop interface.

CHANGED_COLOR

The object color has changed.

103

Appendix C. Constants
CHANGED_SHAPE

The object shape has changed, eg, a box to a cylinder

CHANGED_SCALE

The object scale has changed.

CHANGED_TEXTURE

The texture offset, scale rotation, or simply the object texture has changed.

CHANGED_LINK

The object has linked or its links were broken.

C.11. Type Constants

These constants are used to determine the variable type stored in a heterogenous list. The value returned from
lIGetListEntryTypecan be used for comparison against these constants.

Type Constants

TYPE_INTEGER

The list entry is an integer.

TYPE_FLOAT

The list entry is a float.

TYPE_STRING

The list entry is a string.

TYPE_KEY
The list entry is a key.

TYPE_VECTOR

The list entry is a vector.

TYPE_ROTATION

The list entry is a rotation.

TYPE_INVALID

The list entry is invalid.

C.12. Agent Info Constants

Each of these constants represents a bit in the integer returned frdl@eb&gentinfofunction and can be used
in an expression to determine the specified information about an agent.

104

Appendix C. Constants
Agent Info Constants

AGENT_FLYING
The agent is flying.
AGENT_ATTACHMENTS

The agent has attachments.

AGENT_SCRIPTED

The agent has scripted attachments.

C.13. Texture Animation Constants

These constants are used in lse=tTextureAnimapi to control the animation mode.

Texture Animation Constants

ANIM_ON

Texture animation is on.

LOOP

Loop the texture animation.

REVERSE

Play animation in reverse direction.

PING_PONG

play animation going forwards, then backwards.

SMOOTH

slide in the X direction, instead of playing separate frames.

ROTATE

Animate texture rotation.

SCALE

Animate the texture scale.

C.14. Particle System Constants

These constants are used in calls toltRarticleSystemapi to specify parameters.

105

Appendix C. Constants
Particle System Parameters

PSYS_PART_FLAGS

Each particle that is emitted by the particle system is simulated based on the following flags. To use
multiple flags, bitwise or (]) them together.

PSYS_PART_FLAGS Values

PSYS_PART_INTERP_COLOR_MASK

Interpolate both the color and alpha from the start value to the end value.

PSYS_PART_INTERP_SCALE_MASK

Interpolate the particle scale from the start value to the end value.

PSYS_PART_WIND_MASK

Particles have their velocity damped towards the wind velocity.

PSYS_PART_BOUNCE_MASK

Particles bounce off of a plane at the object’s Z height.

PSYS_PART_FOLLOW_SRC_MASK

The particle position is relative to the source object’s position.

PSYS_PART_FOLLOW_VELOCITY_MASK

The particle orientation is rotated so the vertical axis faces towards the particle velocity.

PSYS_PART_TARGET_POS_MASK
The particle heads towards the location of the target object as defined by PSYS _SRC_TARGET_KEY.

PSYS_PART_EMISSIVE_MASK

The particle glows.

PSYS_PART_RANDOM_ACCEL_MASK

(not implemented)

PSYS_PART_RANDOM_VEL_MASK

(not implemented)

PSYS_PART_TRAIL_MASK

(not implemented)

PSYS_SRC_PATTERN

The pattern which is used to generate particles. Use one of the following values:

106

Appendix C. Constants
PSYS SRC_PATTERN Values

PSYS_PART_SRC_PATTERN_DROP

Drop particles at the source position.

PSYS_PART_SRC_PATTERN_EXPLODE

Shoot particles out in all directions, using the burst parameters.

PSYS_PART_SRC_PATTERN_ANGLE

Shoot particles across a 2 dimensional area defined by the arc created from
PSYS_SRC_OUTERANGLE. There will be an open area defined by PSYS_SRC_INNERANGLE
within the larger arc.

PSYS_PART_SRC_PATTERN_ANGLE_CONE

Shoot particles out in a 3 dimensional cone with an outer arc of PSYS_SRC_OUTERANGLE and an
inner open area defined by PSYS_SRC_INNERANGLE.

PSYS_PART_START_COLOR

a vector <r,g,b> which determines the starting color of the object.

PSYS_PART_START_ALPHA

a float which determines the starting alpha of the object.

PSYS_PART_END_COLOR

a vector <r, g, b> which determines the ending color of the object.

PSYS_PART_END_ALPHA

a float which determines the ending alpha of the object.

PSYS_PART_START_SCALE

a vector <sx, sy, z>, which is the starting size of the particle billboard in meters (z is ignored).

PSYS_PART_END_SCALE

a vector <sx, sy, z>, which is the ending size of the particle billboard in meters (z is ignored).

PSYS_PART_MAX_AGE

age in seconds of a particle at which it dies.

PSYS_SRC_ACCEL

a vector <x, y, z> which is the acceleration to apply on particles.

PSYS_SRC_TEXTURE

an asset name for the texture to use for the particles.

PSYS_SRC_BURST_RATE

how often to release a particle burst (float seconds).

107

Appendix C. Constants

PSYS_SRC_INNERANGLE

specifies the inner angle of the arc created by the PSYS_PART_SRC_PATTERN_ANGLE or
PSYS_PART_SRC_PATTERN_ANGLE_CONE source pattern. The area specified will not have particles
init..

PSYS_SRC_OUTERANGLE

specifies the outer angle of the arc created by the PSYS_PART_SRC_PATTERN_ANGLE or
PSYS PART_SRC_PATTERN_ANGLE_CONE source pattern. The area between the outer and inner angle
will be filled with particles..

PSYS_SRC_BURST_PART_COUNT

how many particles to release in a burst.

PSYS_SRC_BURST_RADIUS

what distance from the center of the object to create the particles.

PSYS_SRC_BURST_SPEED_MIN

minimum speed that a particle should be moving.

PSYS_SRC_BURST_SPEED_MAX

maximum speed that a particle should be moving.

PSYS_SRC_MAX_AGE

how long this particle system should last, 0.0 menas forever.

PSYS SRC TARGET KEY
the key of a target object to move towards if PSYS_PART_TARGET_POS_MASK is enabled.

PSYS_SRC_OMEGA

Sets the angular velocity to rotate the axis that SRC_PATTERN_ANGLE and
SRC_PATTERN_ANGLE_CONE use..

C.15. Agent Data Constants

These constants are used in calls tollRequestAgentDatapi to collect information about an agent which will
be provided in thelataserver event

Texture Animation Constants

DATA_ONLINE

"1" for online "0" for offline.

DATA_NAME

The name of the agent.

DATA_BORN
The date the agent was born returned in ISO 8601 format of YYYY-MM-DD.

108

Appendix C. Constants

DATA_RATING
Returns the agent ratings as a comma separated string of six integers. They are:
1. Positive rated behavior
2. Negative rated behavior
3. Positive rated appearance
4. Negative rated appearance
5. Positive rated building
6. Negative rated building

C.16. Float Constants

LSL provides a small collection of floating point constants for use in float arithmetic. These constants are usually
employed while performing trigonometric calculations, but are sometimes useful for other applications such as
specifying arc radians to sensor or particle system functions.

Float Constants

Pl
3.14159265 - The radians of a hemicircle.

TWO_PI
6.28318530 - The radians of a circle.

PI_BY_TWO
1.57079633 - The radians of a quarter circle.

DEG_TO_RAD

0.01745329 - Number of radians per degree. You can use this to convert degrees to radians by multiplying
the degrees by this number.

RAD_TO_DEG

57.2957795 - Number of degrees per radian. You can use this number to convert radians to degrees by
multiplying the radians by this number.

SQRT2
1.41421356 - The square root of 2.

C.17. Key Constant

There is only one key constant which acts as an invalid key: NULL_KEY.

109

Appendix C. Constants

C.18. Miscellaneous Integer Constants

There is one uncategorized integer constant which is used in some of the texturing and coloring api: ALL_SIDES

C.19. Miscellaneous String Constants

There is one uncategorized string constant which is used idataserveevent: EOF

C.20. Vector Constant

There is only one vector constant which acts as a zero vector; ZERO_VECTOR =<0,0,0>.

C.21. Rotation Constant

There is only one rotation constant which acts as a zero rotation: ZERO_ROTATION = <0,0,0,1>.

C.22. Vehicle Parameters

Parameters

VEHICLE_LINEAR_FRICTION_TIMESCALE

A vector of timescales for exponential decay of the vehicle’s linear velocity along its preferred axes of
motion (at, left, up). Range = [0.07, inf) seconds for each element of the vector.

VEHICLE_ANGULAR_FRICTION_TIMESCALE

A vector of timescales for exponential decay of the vehicle’s angular velocity about its preferred axes of
motion (at, left, up). Range = [0.07, inf) seconds for each element of the vector.

VEHICLE_LINEAR_MOTOR_DIRECTION

The direction and magnitude (in preferred frame) of the vehicle’s linear motor. The vehicle will accelerate
(or decelerate if necessary) to match its velocity to its motor. Range of magnitude = [0, 30] meters/second.

VEHICLE_LINEAR_MOTOR_TIMESCALE

The timescale for exponential approach to full linear motor velocity.

VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE

The timescale for exponential decay of the linear motor's magnitude.

VEHICLE_ANGULAR_MOTOR_DIRECTION

The direction and magnitude (in preferred frame) of the vehicle’s angular motor.The vehicle will accelerate
(or decelerate if necessary) to match its velocity to its motor.

110

Appendix C. Constants

VEHICLE_ANGULAR_MOTOR_TIMESCALE

The timescale for exponential approach to full angular motor velocity.

VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE

The timescale for exponential decay of the angular motor’s magnitude.

VEHICLE_HOVER_HEIGHT

The height (above the terrain or water, or global) at which the vehicle will try to hover.

VEHICLE_HOVER_HEIGHT_EFFICIENCY

A slider between minimum (0.0 = bouncy) and maximum (1.0 = fast as possible) damped motion of the
hover behavior.

VEHICLE_HOVER_HEIGHT_TIMESCALE

The period of bounce (or timescale of exponential approach, depending on the hover efficiency) for the
vehicle to hover to the proper height.

VEHICLE_BUOYANCY

A slider between minimum (0.0) and maximum anti-gravity (1.0).

VEHICLE_LINEAR_DEFLECTION_EFFICIENCY

A slider between minimum (0.0) and maximum (1.0) deflection of linear velocity. That is, it's a simple
scalar for modulating the strength of linear deflection.

VEHICLE_LINEAR_DEFLECTION_TIMESCALE

The timescale for exponential success of linear deflection deflection. It is another way to specify how much
time it takes for the vehicle’s linear velocity to be redirected to it's preferred axis of motion.

VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY

A slider between minimum (0.0) and maximum (1.0) deflection of angular orientation. That is, it's a simple
scalar for modulating the strength of angular deflection such that the vehicle’s preferred axis of motion
points toward it's real velocity.

VEHICLE_ANGULAR_DEFLECTION_TIMESCALE

The timescale for exponential success of linear deflection deflection. It's another way to specify the strength
of the vehicle’s tendency to reorient itself so that it's preferred axis of motion agrees with it's true velocity.

VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY

A slider between minimum (0.0 = wobbly) and maximum (1.0 = firm as possible) stability of the vehicle to
keep itself upright.

VEHICLE_VERTICAL_ATTRACTION_TIMESCALE

The period of wobble, or timescale for exponential approach, of the vehicle to rotate such that it's preferred
"up" axis is oriented along the world’s "up" axis.

VEHICLE_BANKING_EFFICIENCY
A slider between anti (-1.0), none (0.0), and maxmum (1.0) banking strength.

111

Appendix C. Constants

VEHICLE_BANKING_MIX

A slider between static (0.0) and dynamic (1.0) banking. "Static" means the banking scales only with the
angle of roll, whereas "dynamic" is a term that also scales with the vehicle’s linear speed.

VEHICLE_BANKING_TIMESCALE

The timescale for banking to exponentially approach it's maximum effect. This is another way to scale the
strength of the banking effect, however it affects the term that is proportional to the difference between what
the banking behavior is trying to do, and what the vehicle is actually doing.

VEHICLE_REFERENCE_FRAME

A rotation of the vehicle’s preferred axes of motion and orientation (at, left, up) with respect to the vehicle’s
local frame (X, y, z).

C.23. Vehicle Flags

Flags

VEHICLE_FLAG_NO_DEFLECTION_UP

This flag prevents linear deflection parallel to world z-axis. This is useful for preventing ground vehicles
with large linear deflection, like bumper cars, from climbing their linear deflection into the sky.

VEHICLE_FLAG_LIMIT_ROLL_ONLY

For vehicles with vertical attractor that want to be able to climb/dive, for instance, airplanes that want to use
the banking feature.

VEHICLE_FLAG_HOVER_WATER_ONLY

Ignore terrain height when hovering.

VEHICLE_FLAG_HOVER_TERRAIN_ONLY

Ignore water height when hovering.

VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT
Hover at global height.

VEHICLE_FLAG_HOVER_UP_ONLY

Hover doesn’t push down. Use this flag for hovering vehicles that should be able to jump above their hover
height.

VEHICLE_FLAG_LIMIT_MOTOR_UP

Prevents ground vehicles from motoring into the sky.

112

Appendix C. Constants

C.24. Vehicle Types

Types

VEHICLE_TYPE_SLED

Simple vehicle that bumps along the ground, and likes to move along it's local x-axis.

/I most friction for left-right, least for up-down
lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <30, 1, 1000>);

/I no angular friction
lISetVehicleVectorParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE, <1000, 1000, 1000>);

/I no linear motor

lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 1000);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 120);

/I no agular motor

lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 1000);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 120);

/I no hover (but with timescale of 10 sec if enabled)
lISetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0);
lISetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY, 10);
lISetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 10);
lISetVehicleFloatParam(VEHICLE_BUOYANCY, 0);

/I maximum linear deflection with timescale of 1 second
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 1);

/I no angular deflection
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);

/I no vertical attractor (doesn't mind flipping over)
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 1000);

/I no banking

lISetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_BANKING_MIX, 1);
lISetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, 10);

/I default rotation of local frame
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, <0, 0, 0, 1>);

/I remove these flags

lIRemoveVehicleFlags(VEHICLE_FLAG_HOVER_WATER_ONLY
| VEHICLE_FLAG_HOVER_TERRAIN_ONLY
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT
| VEHICLE_FLAG_HOVER_UP_ONLY);

/I set these flags (the limit_roll flag will have no effect

113

Appendix C. Constants

/I until banking is enabled, if ever)
lISetVehicleFlags(VEHICLE_FLAG_NO_DEFLECTION_UP
| VEHICLE_FLAG_LIMIT_ROLL_ONLY
| VEHICLE_FLAG_LIMIT_MOTOR_UP);

VEHICLE_TYPE_CAR

Another vehicle that bounces along the ground but needs the motors to be driven from external controls or
timer events.

/I most friction for left-right, least for up-down
lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <100, 2, 1000>);

/I no angular friction
lISetVehicleVectorParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE, <1000, 1000, 1000>);

/I linear motor wins after about a second, decays after about a minute
lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 1);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 60);

/I agular motor wins after a second, decays in less time than that
lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 1);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 0.8);

/I no hover

lISetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0);
lISetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 1000);
lISetVehicleFloatParam(VEHICLE_BUOYANCY, 0);

/I maximum linear deflection with timescale of 2 seconds
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 2);

/Il no angular deflection
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 10);

/I critically damped vertical attractor
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 10);

/I weak negative critically damped banking
lISetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, -0.2);
lISetVehicleFloatParam(VEHICLE_BANKING_MIX, 1);
lISetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, 1);

/I default rotation of local frame
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, <0, 0, 0, 1>);

/I remove these flags

IRemoveVehicleFlags(VEHICLE_FLAG_HOVER_WATER_ONLY
| VEHICLE_FLAG_HOVER_TERRAIN_ONLY

114

Appendix C. Constants
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT);

/I set these flags
lISetVehicleFlags(VEHICLE_FLAG_NO_DEFLECTION_UP
| VEHICLE_FLAG_LIMIT_ROLL_ONLY
| VEHICLE_FLAG_HOVER_UP_ONLY
| VEHICLE_FLAG_LIMIT_MOTOR_UP):

VEHICLE_TYPE_BOAT

Hovers over water with lots of friction and some anglar deflection.

/I least for forward-back, most friction for up-down
lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <10, 3, 2>);

/I uniform angular friction (setting it as a scalar rather than a vector)
lISetVehicleFloatParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE, 10);

/I linear motor wins after about five seconds, decays after about a minute
lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 5);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 60);

/I agular motor wins after four seconds, decays in same amount of time
lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 4);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 4);

/I hover

lISetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0);
lISetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 2.0);
lISetVehicleFloatParam(VEHICLE_BUOYANCY, 1);

/I halfway linear deflection with timescale of 3 seconds
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 3);

/I angular deflection
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 5);

/I somewhat bounscy vertical attractor
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 5);

/I weak negative damped banking

lISetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, -0.3);
lISetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.8);
lISetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, 1);

/I default rotation of local frame
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, <0, 0, 0, 1>);

/I remove these flags

115

Appendix C. Constants

IRemoveVehicleFlags(VEHICLE_FLAG_HOVER_TERRAIN_ONLY
| VEHICLE_FLAG_LIMIT _ROLL_ONLY
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT);

/I set these flags

lISetVehicleFlags(VEHICLE_FLAG_NO_DEFLECTION_UP
| VEHICLE_FLAG_HOVER_WATER_ONLY
| VEHICLE_FLAG_HOVER_UP_ONLY
| VEHICLE_FLAG_LIMIT_MOTOR_UP);

VEHICLE_TYPE_AIRPLANE

Uses linear deflection for lift, no hover, and banking to turn.

/I very little friction along forward-back axis
lISetVehicleVectorParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, <200, 10, 5>);

/I uniform angular friction
lISetVehicleFloatParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE, 20);

/I linear motor

lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 2);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 60);

/I agular motor

lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 4);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 8);

/I no hover

lISetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 0);
lISetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 1000);
lISetVehicleFloatParam(VEHICLE_BUOYANCY, 0);

/I linear deflection
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0.5);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 0.5);

/I angular deflection
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 1.0);
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 2.0);

/I vertical attractor
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 0.9);
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 2);

/I banking

lISetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.7);
lISetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, 2);

/I default rotation of local frame
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, <0, 0, 0, 1>);

116

Appendix C. Constants

/I remove these flags

lIRemoveVehicleFlags(VEHICLE_FLAG_NO_DEFLECTION_UP
| VEHICLE_FLAG_HOVER_WATER_ONLY
| VEHICLE_FLAG_HOVER_TERRAIN_ONLY
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT
| VEHICLE_FLAG_HOVER_UP_ONLY
| VEHICLE_FLAG_LIMIT_MOTOR_UP);

/I set these flags
lISetVehicleFlags(VEHICLE_FLAG_LIMIT_ROLL_ONLY);

VEHICLE_TYPE_BALLOON

Hover, and friction, but no deflection.

/I uniform linear friction
lISetVehicleFloatParam(VEHICLE_LINEAR_FRICTION_TIMESCALE, 5);

/I uniform angular friction
lISetVehicleFloatParam(VEHICLE_ANGULAR_FRICTION_TIMESCALE, 10);

/I linear motor

lISetVehicleVectorParam(VEHICLE_LINEAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_TIMESCALE, 5);
lISetVehicleFloatParam(VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE, 60);

/I agular motor

lISetVehicleVectorParam(VEHICLE_ANGULAR_MOTOR_DIRECTION, <0, 0, 0>);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_TIMESCALE, 6);
lISetVehicleFloatParam(VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE, 10);

/I hover

lISetVehicleFloatParam(VEHICLE_HOVER_HEIGHT, 5);
lISetVehicleFloatParam(VEHICLE_HOVER_EFFICIENCY, 0.8);
lISetVehicleFloatParam(VEHICLE_HOVER_TIMESCALE, 10);
lISetVehicleFloatParam(VEHICLE_BUOYANCY, 1);

/I no linear deflection
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_LINEAR_DEFLECTION_TIMESCALE, 5);

/Il no angular deflection
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_ANGULAR_DEFLECTION_TIMESCALE, 5);

/I no vertical attractor
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY, 1);
lISetVehicleFloatParam(VEHICLE_VERTICAL_ATTRACTION_TIMESCALE, 1000);

/I no banking

lISetVehicleFloatParam(VEHICLE_BANKING_EFFICIENCY, 0);
lISetVehicleFloatParam(VEHICLE_BANKING_MIX, 0.7);
lISetVehicleFloatParam(VEHICLE_BANKING_TIMESCALE, 5);

117

Appendix C. Constants

/I default rotation of local frame
lISetVehicleRotationParam(VEHICLE_REFERENCE_FRAME, <0, 0, 0, 1>);

/I remove all flags
lIRemoveVehicleFlags(VEHICLE_FLAG_NO_DEFLECTION_UP

| VEHICLE_FLAG_HOVER_WATER_ONLY

| VEHICLE_FLAG_LIMIT_ROLL_ONLY

| VEHICLE_FLAG_HOVER_TERRAIN_ONLY
| VEHICLE_FLAG_HOVER_GLOBAL_HEIGHT
| VEHICLE_FLAG_HOVER_UP_ONLY
| VEHICLE_FLAG_LIMIT_MOTOR_UP);

118

