
1

Evaluating the Impact of a Graph Grammar-Based Activity for Introducing
Automata Theory in K-12∗

Júlia Veiga da Silva, Federal University of Pelotas,
jvsilva@inf.ufpel.edu.br, https://orcid.org/0000-0002-6839-3117

Simone André da Costa Cavalheiro, Federal University of Pelotas,
simone.costa@inf.ufpel.edu.br, https://orcid.org/0000-0002-7442-7379

Luciana Foss, Federal University of Pelotas,
lfoss@inf.ufpel.edu.br, https://orcid.org/0000-0002-0473-4111

Abstract. This paper presents the application of an educational activity for K-12 students, aligned
with the National Common Curricular Base, which explores Automata Theory through Graph
Grammar. Formal Methods, important in complex systems, promote skills such as abstraction,
analysis, and critical thinking, which are essential for 21st-century students. Despite the
growing interest in Computing Education, formal specifications, part of Formal Methods, remain
underexplored. Thus, this activity focused on Deterministic Finite Automata aims to bridge this
gap. A pilot experiment with a group of students was conducted, and the results indicated that the
students not only understood the concepts related to automata but also successfully manipulated
the grammars with the tool used.

Keywords: computing education, k-12, automata theory, graph grammar.

Avaliação do Impacto de uma Atividade Baseada em Gramática de Grafos
para Introdução à Teoria dos Autômatos na Educação Básica

Resumo. Este trabalho apresenta a aplicação de uma atividade educacional para estudantes
da Educação Básica, alinhada à Base Nacional Comum Curricular, que explora a Teoria dos
Autômatos por meio de Gramática de Grafos. Os Métodos Formais, importantes em sistemas
complexos, promovem habilidades como abstração, análise e pensamento crítico, essenciais
para os estudantes do século XXI. Apesar do crescente interesse pela Educação em Computação,
a especificação formal, parte dos Métodos Formais, ainda é pouco explorada. Assim, a atividade
focada em Autômatos Finitos Determinísticos busca minimizar essa lacuna. Um experimento
piloto com um grupo de alunos foi realizado e os resultados indicaram que os estudantes
compreenderam tanto os conceitos relacionados aos autômatos, quanto souberam manipular as
gramáticas na ferramenta utilizada.

Palavras-chave: educação em computação, educação básica, teoria dos autômatos, gramática
de grafos.

1. Introduction

As computer systems become more complex, the need for precise specifications to
describe their expected behavior becomes increasingly critical. Formal specifications, part of
Formal Methods, provide a rigorous, mathematical approach to defining system requirements
and behaviors, avoiding the ambiguities and misinterpretations often arising from informal
specifications (RIBEIRO, 2000). This precision is essential not only for ensuring implementation
correctness but also for solving problems effectively, as poorly defined solutions can lead to

∗This work was supported by CAPES – Brazil – Financing Code 001, the SACCI Network, SMED/Pelotas, PREC, and PRPPG / UFPel.

mailto:jvsilva@inf.ufpel.edu.br
https://orcid.org/0000-0002-6839-3117
mailto:simone.costa@inf.ufpel.edu.br
https://orcid.org/0000-0002-7442-7379
mailto:lfoss@inf.ufpel.edu.br
https://orcid.org/0000-0002-0473-4111


2

critical errors in complex systems. To create a formal specification, a Formal Specification
Language (FSL) with well-defined syntax and semantics is necessary to ensure precision in the
specification.

In a scenario where systems are increasingly critical and sensitive to failures, the use of
FSL to ensure the correctness and reliability of complex systems has expanded, extending into
the field of education. Computing Education, once primarily focused on technical programming
skills, is now broadening to include more fundamental and theoretical areas, such as FSL, which
fosters skills in abstraction, formal reasoning, and problem-solving. This shift is evident in the
expansion of computing curricula to K-121 education, where the development of these skills is
becoming increasingly valued (NOBLE et al., 2022). Consequently, FSL plays a crucial role in
Computer Science education, going beyond coding to promote a deeper understanding of the
principles underlying computational systems (BROY et al., 2024).

This growing attention to FSL in the educational context reflects one aspect of the
transformation that Computing Education is undergoing. This transformation has broadened its
focus in higher education, extending beyond technical programming to include more foundational
and theoretical areas. The field is evolving into a more general-purpose discipline, even within
K-12 education, with an emphasis on problem-solving. This shift is encapsulated in the concept
of Computational Thinking (CT), which posits that computing extends beyond programming and
encompasses a set of problem-solving skills, such as abstraction, decomposition, automation,
and evaluation, benefiting everyone – not just computer scientists (WING, 2006).

Despite the expansion of research on CT in Brazil in recent years (FRANÇA e TEDESCO,
2019), the approval of the norms on computing in K-12 – in addition to the National Common
Curricular Base (BNCC) (BRAZIL, 2022) –, which designates CT as one of the three main
core areas for developing specific skills in computing, presents several challenges for educators.
Issues such as professional training, the availability of appropriate teaching materials, and the
implementation of effective methodologies pose significant hurdles. To facilitate this change, it
is essential to create activities that promote the development of the learning objectives outlined
by the BNCC for each level of K-12 education.

Although Computing Education has expanded with the rise of CT reached K-12, its
efforts have predominantly focused on areas such as visual programming, primarily using Scratch
(KITE; PARK e WIEBE, 2021), games (KRATH; SCHÜRMANN e von KORFLESCH, 2021),
and robotics (YANG; LIU e CHEN, 2020). On the other hand, Theoretical Computing, where
FSL is inserted, receives less attention in education. To bridge this gap, an educational activity
based on FSL concepts was proposed (SILVA et al., 2024). The activity aims to develop the
EF09CO03 skill outlined in the BNCC, which involves using automata to describe behaviors
abstractly and automate them through an event-based programming language. It focused on the
Deterministic Finite Automata (DFA) concept and was developed using GrameStation (SILVA
JUNIOR; CAVALHEIRO e FOSS, 2021). GrameStation is a game engine based on Graph
Grammar (GG), the language employed for activity specification. Thus, this work aims to present
the results of the application and evaluation of this activity.

The rest of this work is organized as follows: Section 2 presents the theoretical background;
Section 3 describes the methodology, including a synthesis of the Systematic Literature Review
(SLR) conducted, which is detailed in (SILVA; CAVALHEIRO e FOSS, 2024), as well as
the methods used for the development and evaluation of the activity; Section 4 gives a brief
presentation of the activity; Section 5 outlines the application and evaluation of the activity;
Section 6 presents the results and discussion; and Section 7 concludes the work and suggests
directions for future research.

1In this work, “K-12” refers to primary and secondary education, ranging from kindergarten through high school.



3

2. Theoretical Background

This section outlines the theoretical context of our study. It addresses the definitions of
Automata Theory – focusing on DFA – and GG, and introduces the tool employed to create and
apply the activity.

2.1. Automata Theory

Automata are FSLs that can be used for abstract modeling of systems that follow a specific
set of instructions to perform particular tasks. It can be envisioned as a machine comprising a
finite set of states capable of reading input symbols, transitioning between states according to
the symbols encountered, and, in certain cases, producing an output. Automata are classified
into various types, including Finite Automata and Pushdown Automata. This work, however,
concentrates on DFA, a specific subcategory of Finite Automata. Formally, a DFA is defined as
follows (MOGENSEN, 2024):

A DFA is represented as a tuple M = (Q, Σ, δ, q0, F ), where: Q denotes a finite set of
states; Σ signifies a finite set of input symbols, referred to as the input alphabet; δ : Q × Σ → Q
represents the transition function that maps a state and an input symbol to a new state, though it
is not necessarily defined for every possible combination of state and input symbol; q0 ∈ Q is the
initial state; and F ⊆ Q indicates the set of accepting (or final) states.

Thus, the automaton processes symbols from an input alphabet and transitions between
states based on these symbols and its transition function, δ. This function maps a current state and
an input symbol to a new state. The transition occurs sequentially for each symbol in the input,
beginning with the initial state, q0. After processing the entire input string, if the DFA is in an
accepting state (belonging to the set F ), the input string is accepted by the DFA, signifying that it
is part of the language recognized by the DFA. Conversely, if the DFA is in a non-accepting state
or fails to complete the reading of the input string, the input string is not recognized by the DFA.

2.2. Graph Grammar

A GG models a system by representing its states as graphs composed of vertices and
edges, while defining events that can change its current state as a set of graph transformation
rules (EHRIG et al., 1997). It is essential for a GG to specify how its state graph, known as the
initial graph, is initialized. Additionally, a GG differentiates and restricts its elements through a
type graph, which defines the various components of the system. It also outlines a set of rules
that describe the potential state changes within the system.

As an example, Figure 1 illustrates the type graph (on the left) and the initial graph (on
the right) of the Pac-Man game represented as a GG. The type graph specifies the elements that
compose the game, while the initial graph depicts a Pac-Man, a ghost, and fruits arranged on
a 3x4 grid, along with a counter (represented by a pink triangle) related to Pac-Man to track
the number of fruits consumed. Specifically, the Pac-Man game includes four rules (Figure 2):
PacMove, GhostMove, PacEat, and GhostKill, each defined by a pair of graphs connected through
a graph homomorphism (HAHN e TARDIF, 1997).

The graphs representing each rule consist of a Left-Hand Side (LHS), which sets
a condition for the rule to be applied, and a Right-Hand Side (RHS), which specifies the
consequence of applying the rule. In PacMove (Figure 2), for instance, the LHS defines the
condition where Pac-Man is located in a place connected to another, while the RHS defines
the consequence by removing Pac-Man from the initial location and placing it in another. This
structure also requires mappings between elements of the graphs (morphisms), indicating for
each element in one graph its corresponding element, if any, in the other graph. When an element



4

Figure 1: Type graph (left) and initial graph (right) of the Pac-Man game as Graph Grammar

Figure 2: PacMove (top, left), GhostMove (top, right), PacEat (bottom, left), and GhostKill
(bottom, right)

is mapped successfully, it means the rule preserves it, as with Pac-Man in PacMove (where
Pac-Man’s position is preserved while its connection to the place is removed and recreated). If an
element in the LHS remains unmapped, the rule deletes it, as in Pac-Man’s deletion in GhostKill.
Conversely, if an element is in the RHS but unmapped, the rule creates it. To apply a rule, thereby
changing the system’s current state, it is necessary to find a match by mapping the LHS elements
to their corresponding elements in a state graph.

2.3. GrameStation

GrameStation (SILVA JUNIOR; CAVALHEIRO e FOSS, 2021) is a tool based on GG
designed for creating and executing games that follow this formal modeling language. Since
games are represented as GGs, the tool also fosters the development of skills associated with
CT. These skills are developed (SILVA JUNIOR, 2020) by both the game creator (who specifies
the GG) and the player (who simulates the GG). GrameStation is structured into three modules:
Grame Explorer, Grame Builder, and Grame Player, which enable users to locate, create, and
execute games, respectively.

Within the tool, the type graph serves as a declaration area, the initial graph represents
the game’s starting layout, and the rules outline the player’s possible actions. To play a game
(using the Grame Player module), users can select, map, and apply the specified rules throughout
gameplay. While the game runs in Grame Player, the specified rules appear at the top of the
screen. The LHS and RHS graphs are displayed, allowing the player to establish a match by
selecting elements in the initial graph corresponding to the highlighted elements in the LHS. If
an invalid mapping occurs, such as mapping a Robot to a Ship, an error symbol appears on the
screen, and the current match is canceled.



5

3. Methods

An SLR was conducted in (SILVA; CAVALHEIRO e FOSS, 2024) to investigate how
Automata Theory is addressed in Computing Education. This review identified best practices and
existing gaps that informed the development of the proposed activity (SILVA et al., 2024). The
findings from the SLR emphasized the advantages of using interactive tools and gamification, as
interactive simulations and game-like elements enhanced student engagement and comprehension,
making abstract concepts more accessible through active learning. Gamified activities were also
noted to promote motivation, collaboration, and competition, potentially improving learning
outcomes. However, assessment practices in this area often lacked formalization, relying on
custom methods, which highlighted the need for standardized approaches to evaluate student
learning consistently. In Brazil, despite recent BNCC updates incorporating Computing
Education in K-12, research and educational initiatives related to Automata Theory remain
limited, underscoring the need for resources and teacher training to fully integrate these methods.

The creation of the activity was based on the ENgAGED method. ENgAGED (Edu-
catioNAl GamEs Development) is a process designed for developing educational games for
computer teaching, integrating principles of both instructional design and game design (BATTIS-
TELLA, 2016). This process is structured into five main phases based on instructional design,
with phase 3 — focused on the Development of the Educational Game — divided into five
additional subphases that specifically address game design. Considering that creating a game
modeled as a GG involves well-defined tasks, which is considerably different from creating
games in other models, a series of adaptations to the ENgAGED process is proposed to facilitate
the development of educational games using the GradeStation platform (SILVA et al., 2021).
The proposed process modifies the original ENgAGED methodology to suit the GrameStation
environment, incorporating new phases and simplifying steps that the platform automates.

The activity was evaluated using MEEGA+KIDS (VON WANGENHEIM; PETRI e
BORGATTO, 2020). This questionnaire aims to assess the quality of educational games regarding
usability and player experience from students’ perspective within the context of Computing
Education in K-12. The model consists of three categories: demographic information, usability,
and player experience. The response format for items in the usability and player experience
categories is based on a 5-point Likert scale (DEVELLIS, 2003), with options ranging from -2
(“strongly disagree”) to 2 (“strongly agree”). In this model, usability is defined as the degree
to which a product (educational game) can be effectively and efficiently used by specific users
(students) to achieve particular goals in a specific context of use (K-12) (VON WANGENHEIM;
PETRI e BORGATTO, 2020). In contrast, player experience is a quality factor encompassing the
depth of a student’s involvement in the game task (VON WANGENHEIM; PETRI e BORGATTO,
2020).

The questionnaire underwent several adaptations to address the specific requirements of
this study. In particular, the “social interaction” dimension was excluded since GrameStation
does not currently support online play. Additionally, items that referenced the subject matter
covered by the activity (e.g., “I learned the subject content with this game.”) were omitted
because the activity is not directly related to any of the subjects in the students’ original classroom
curriculum, which the questionnaire item addresses. Finally, three questions were added to
gather data regarding the students’ perceptions of automatons: “What did you find easiest about
the game?”; “What did you find most difficult about the game?”; and “Which of the concepts
presented did you find most challenging?”.



6

4. Activity

The methodological steps involved the proposal’s conception, and the detailed proposed
tasks are presented in (SILVA et al., 2024). The activity places students as a robot explorer on a
space mission, with each task designed to gradually introduce concepts such as initial and final
states, undefined transitions, and word acceptance. Table 1 provides a brief description of each
task.

Table 1: Design of tasks at different levels

Approach Description
#1 Students analyze a complete tape to predict the final state of the automaton

before simulating its execution. This task introduces the concepts of states
and transitions.

#2 Students specify an initial state and observe the final state after each
simulation, varying the initial state to explore different outcomes. This task
highlights the importance of the initial state and transitions.

#3 Students have to verify whether the automaton reaches a final state when
processing a sequence of symbols, addressing the concept of acceptance or
rejection of a word.

#4 Students analyze whether the robot completes the reading of a tape, consid-
ering the possibility of undefined transitions. This exercise explores the
concept of undefined transitions.

#5 Students create a sequence of commands to move the automaton from an
initial state to a final state, addressing initial and final states, transitions,
and acceptance or rejection of a word.

#6 Students must identify the instructions necessary to complete the task,
eventually recognizing only a subset of the language. This introduces the
concept of recognized language.

#7 Students create an automaton that accepts a specific, regular language,
emphasizing automata specification.

5. Activity Application

To test the feasibility of the activity, a pilot experiment2 was conducted with nine students.
The experiment was conducted in person, with all participants being K-12 students (7th grade,
9th grade, and 1st year of high school) from four schools (Mario Quintana, São José, SESI e
IFSul) in the city of Pelotas. A range of ages was selected to determine if age differences would
affect the results. Prior to the activity, all guardians of the participants read and signed the Free
and Informed Consent Form (TCLE), indicating their voluntary consent for their children to
participate in the research and their awareness of how the data would be used.

Before the activity started, students were introduced to the basics of Automata Theory
necessary for completing the task, such as states (initial and final), transitions, tape (and symbols),
words, and the acceptance or rejection of a word. These concepts were presented3 appropriately
for the students’ age and grade level, using ludic examples and simulations. Additionally, the
procedure for performing the activity in GrameStation was explained without delving into the
details of GG. Specifically, the concepts of rules and rule application (related to GG) were
presented simply as “the way to play” in GrameStation. The explanation was delivered to the

2Project approved by the ethics committee. CAAE: 73891417.0.0000.5317.
3The materials used are available at: https://bit.ly/4fc4VYU.



7

students as a group, while the activity itself was carried out individually (student and tutor). The
tutor was responsible for outlining the tasks that the student needed to perform, initiating the first
tape of the first task together with the student, but refraining from interfering with the execution
of the remaining tasks.

The activity involved an automaton with five states (Figure 3), requiring students to
complete two tasks: identify the final state and determine whether a word would be accepted or
rejected by the automaton. In the first task, the student received two different and complete tapes
and had to navigate the robot (the main character) through the automaton (by applying rules to
the grammar) until reaching the final state. To accomplish this, they needed to apply transition
rules. In the second task, the student received three additional tapes and had to ascertain which
state the robot would reach after processing the sequence of symbols, identifying the final state.
For this task, in addition to the transition rules, they also had to apply a rule that distinguished
the final state from the others. Finally, the student analyzed the state where the robot stopped and
indicated whether the word was accepted or rejected.

Figure 3: Initial graph of the task in GrameStation

6. Results and Discussion

All nine participants completed the activity, and all responses were included in the
analysis. Figure 4 presents the demographic information of the participants: 33% (3) were
female, and 67% (6) were male. In terms of age, 22% (2) were 12 years old, 11% (1) was 14
years old, 45% (4) were 15 years old, and 22% (2) were 16 years old. Figure 4 illustrates the
percentage of students from different institutions and their respective school grades. Additionally,
it provides information on the participants’ familiarity with both digital and non-digital games.

Figures 5 and 6 display the results concerning usability and player experience based on
the participants’ responses. Each item’s rating is represented by the median, ranging from -2
(“strongly disagree”) to 2 (“strongly agree”). The evaluation of the activity revealed a mostly
positive reception regarding usability. Most participants found the design appealing and noted
that the combination of text, colors, and fonts was well coordinated. The ease of learning and
gameplay received favorable ratings, with 6 out of 9 respondents finding the game easy to learn
and play. While text readability was generally well-rated, there were some discrepancies. The
clarity of the game rules garnered divided opinions, with 4 participants considering the rules
clear and 5 expressing mixed feelings. Conversely, all participants strongly agreed that the colors
used were easy to understand.

The medians indicated in the final column suggest that for most questions, the median



8

Figure 4: Demographic information of participants

response was “agree”, except for the question concerning the game rules, where the median
was “neutral”. Overall, the game was well-received in terms of design, ease of learning, and
gameplay. However, the game rules may require further clarification, as this was the only area
with a “neutral” median and a higher number of negative responses.

Participants’ experiences with the game were predominantly positive, though some
variations were noted. Most participants (6) believed that the content’s organization contributed
to their confidence in learning. They felt that the game offered new challenges at an appropriate
pace and did not become monotonous. Perceptions of the challenge varied; more than half either
disagreed or felt neutral, while 3 participants found the game challenging. Satisfaction upon
completing the tasks was high, with 7 participants expressing satisfaction and 5 believing that
their progress reflected their effort.

Analyzing the data by age group (7th grade, 9th grade, and 1st year of high school)4, we
found that, despite variations in the perceived challenge and pace of the game across different
grade levels, some aspects of the student experience remained consistent. Across all age groups,
students demonstrated high confidence in the learning provided by the game and reported
enjoyment and fun while playing, feeling that the game was not monotonous. However, the
perceived level of engagement, including the tendency to lose track of time, showed significant
differences, with younger students being more engaged and finding the game more challenging.
Furthermore, in our experiment, the preference for traditional learning methods increased with
age, with older students expressing a inclination toward these methods, indicating a possible need
to adjust the activity to better meet their expectations.

Regarding the essay questions5, the analysis focused on summarizing the key points
from the students’ perceptions of the activity. The responses revealed varied perceptions of

4Data divided by groups is available at: https://bit.ly/4fc4VYU.
5Available at: https://bit.ly/4fc4VYU.



9

Figure 5: Overall usability evaluation

Figure 6: Overall player experience evaluation

the game, highlighting both positive aspects and challenges faced. The 7th graders noted that



10

they learned how the tape works and understood the concept of states, finding the game easy
to grasp. However, they struggled with symbol selection and the location of the rules, and
they reported technical issues, such as bugs, that hindered their experience. The 9th graders
appreciated how the game simplified the concepts of accepting and rejecting words. Still, they
found the mechanics difficult to understand and encountered technical issues, such as difficulty
clicking on icons. Despite these challenges, they valued the game’s aesthetics and the simplified
content presentation, recommending bug fixes and game mechanics improvements. Lastly, the
1st graders demonstrated a more detailed understanding of the technical concepts but struggled
with interaction and clarity of the rules. They praised the design and the differentiated teaching
approach but suggested improved rule clarity and bug fixes. These bugs have been reported to
the GrameStation development team.

7. Conclusion

This paper presented the application and evaluation of a proposed activity that introduced
Automata Theory in K-12 education, specifically using the formal language GG. The activity
is based on the EF09CO03 skill from the BNCC and was developed in GrameStation, a game
engine based on GG. In addition to imparting computational concepts, the proposed approaches
also promote CT skills. Alongside the relations established by (SILVA JUNIOR, 2020) using
GG, it is important to note that the manipulation and specification of automata further enhance
these skills.

The use of automata to represent the robot’s behavior during missions exercises abstraction,
particularly through the states that represent the robot’s current condition and the transitions that
signify actions capable of modifying that condition. By specifying automata, students define
algorithms using an event-based language to solve problems. When defining the tape for the
robot to execute a specific mission, they outline the sequence of actions (algorithm) necessary to
complete its task. Additionally, to identify the language recognized by an automaton, students
must discern patterns in various input tapes and generalize the formation rules for all accepted
words. Debugging skills are also developed as students are challenged to define an input tape
that guides the robot in completing a mission, enabling them to simulate the tape processing and
verify whether the mission was accomplished.

The feasibility of the activity was demonstrated through a pilot experiment conducted
with a group of K-12 students from the city of Pelotas. In this experiment, an evaluation
questionnaire was applied (VON WANGENHEIM; PETRI e BORGATTO, 2020). The results
indicated that the students understood the concepts presented during the activity and could
manipulate the grammars in the tool used. Thus, the activity exemplifies using FSL in K-12
and presents an alternative approach to developing CT. It is important to emphasize that the
pilot experiment was not aimed at validating the activity but at identifying aspects that could be
improved. Consequently, it involved a small participant sample and a diverse age range among
the students. Some improvements could enhance the effectiveness of future applications, such as
incorporating group work to promote peer learning and discussion, allowing students to share
different problem-solving strategies. Additionally, refining the assessment questionnaire based on
initial findings to generate more accurate perceptions of student understanding and engagement.
The complexity of the grammars posed some challenges for the execution of the activity. In this
case, an incremental approach to developing the activity could be a possible solution.

In future work, we intend to expand the activity to include additional phases, gradually
increasing its complexity and exploring other types of automata, such as Non-Deterministic
Automata and Pushdown Automata. At the end of the implementation, a new experiment will be
conducted with the activity’s target audience (9th graders).



11

References

BATTISTELLA, P. E. ENgAGED: Um Processo de Desenvolvimento de Jogos para Ensino em
Computação. Florianópolis: UFSC, 2016. Tese de Doutorado.

BRAZIL. Normas sobre Computação na Educação Básica. 2022. Available at:
<http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=
182481-texto-referencia-normas-sobre-computacao-na-educacao-basica&category_slug=
abril-2021-pdf&Itemid=30192>. Accessed on: December 10, 2024.

BROY, M. et al. Does every computer scientist need to know formal methods? Formal Aspects
of Computing, Association for Computing Machinery, 2024. ISSN 0934-5043. Available at:
<https://doi.org/10.1145/3670795>. Accessed on: December 10, 2024.

DEVELLIS, R. F. Scale development: Theory and applications. London: Sage, 2003. 176 p.

EHRIG, H. et al. Algebraic Approaches to Graph Transformation. Part II: Single Pushout
Approach and Comparison with Double Pushout Approach. In: Handbook of Graph Grammars
and Computing by Graph Transformation. Volume 1: Foundations. Netherlands: World Scientific
Publishing Co., Inc., 1997.

FRANÇA, R.; TEDESCO, P. Pensamento Computacional: Panorama dos Grupos de Pesquisa no
Brasil. In: XXX BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION. Proceedings
[...]. Brasília: SBC, 2019. v. 30, n. 1, p. 409-418.

HAHN, G.; TARDIF, C. Graph homomorphisms: structure and symmetry. In: Graph symmetry:
algebraic methods and applications. Netherlands: Springer, 1997. p. 107–166.

KITE, V.; PARK, S.; WIEBE, E. The Code-centric Nature of Computational Thinking Education:
A Review of Trends and Issues in Computational Thinking Education Research. Sage Open,
v. 11, n. 2, p. 1–17, 2021.

KRATH, J.; SCHÜRMANN, L.; von KORFLESCH, H. F. Revealing the Theoretical Basis
of Gamification: A Systematic Review and Analysis of Theory in Research on Gamification,
Serious Games and Game-based Learning. Computers in Human Behavior, v. 125, p. 1–33, 2021.

MOGENSEN, T. Æ. Introduction to Compiler Design. Berlin: Springer Nature, 2024.

NOBLE, J.; STREADER, D.; GARIANO, I. O.; SAMARAKOON, M. More Programming than
Programming: Teaching Formal Methods in a Software Engineering Programme. In: NASA
FORMAL METHODS SYMPOSIUM. Proceedings[...]. Pasadena: Springer, 2022. p. 431–450.

RIBEIRO, L. Métodos Formais de Especificação: Gramática de Grafos. Escola de Informática
da SBC-Sul, v. 8, p. 1–33, 2000.

SILVA, J.; CAVALHEIRO, S.; FOSS, L. Automata theory in computing education: A system-
atic review. In: XXXV SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO.
Proceedings [...]. Rio de Janeiro: SBC, 2024. p. 301–313.

SILVA, J.; SILVA JUNIOR, B.; CAVALHEIRO, S.; FOSS, L. Exploring automata theory
with an educational activity using graph grammar for k-12 education. In: XXXV SIMPÓSIO
BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO. Proceedings [...]. Rio de Janeiro: SBC,
2024. p. 329–342.

SILVA, J. V.; SILVA JUNIOR, B. A.; FOSS, L.; CAVALHEIRO, S. Adaptação do processo
engaged para o desenvolvimento de conteúdos curriculares em uma plataforma de jogos baseada
em gramática de grafos. In: XXXII SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA
EDUCAÇÃO. Proceedings [...]. Belém: SBC, 2021. p. 316–327.

http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=182481-texto-referencia-normas-sobre-computacao-na-educacao-basica&category_slug=abril- 2021-pdf&Itemid=30192
http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=182481-texto-referencia-normas-sobre-computacao-na-educacao-basica&category_slug=abril- 2021-pdf&Itemid=30192
http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=182481-texto-referencia-normas-sobre-computacao-na-educacao-basica&category_slug=abril- 2021-pdf&Itemid=30192
https://doi.org/10.1145/3670795


12

SILVA JUNIOR, B. A.; CAVALHEIRO, S. A. D. C.; FOSS, L. GrameStation: Specifying Games
with Graphs. In: XXXII SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO.
Proceedings [...]. Belém (online): SBC, 2021. p. 499–511.

SILVA JUNIOR, B. A. D. GGasCT: bringing formal methods to the computational thinking.
Pelotas: UFPEL, 2020. Dissertação de Mestrado.

VON WANGENHEIM, C. G.; PETRI, G.; BORGATTO, A. F. MEEGA+ KIDS: a model for the
evaluation of games for computing education in secondary school. Revista Novas Tecnologias na
Educação, v. 18, n. 1, 2020.

WING, J. M. Computational Thinking. Communications of the ACM, v. 49, n. 3, p. 33–35, 2006.

YANG, K.; LIU, X.; CHEN, G. The Influence of Robots on Students’ Computational Thinking:
A Literature Review. International Journal of Information and Education Technology, v. 10, n. 8,
p. 627–631, 2020.


	Introduction
	Theoretical Background
	Automata Theory
	Graph Grammar
	GrameStation

	Methods
	Activity
	Activity Application
	Results and Discussion
	Conclusion

