��

INTERNATIONAL TELECOMMUNICATION UNION��

ITU-T�Q.754��TELECOMMUNICATION�STANDARDIZATION SECTOR�OF ITU�(06/97) ��

SERIES Q: SWITCHING AND SIGNALLING

Specifications of Signalling System No. 7 – Signalling System No. 7 management

Signalling System No. 7 management Application Service Element (ASE) definitions

ITU-T Recommendation Q.754

(Previously CCITT Recommendation)

�

ITU-T Q-SERIES RECOMMENDATIONS

SWITCHING AND SIGNALLING

���SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE�Q.1–Q.3��INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING�Q.4–Q.59��FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN�Q.60–Q.99��CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS�Q.100–Q.119��SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5�Q.120–Q.249��SPECIFICATIONS OF SIGNALLING SYSTEM No. 6�Q.250–Q.309��SPECIFICATIONS OF SIGNALLING SYSTEM R1�Q.310–Q.399��SPECIFICATIONS OF SIGNALLING SYSTEM R2�Q.400–Q.499��DIGITAL EXCHANGES�Q.500–Q.599��INTERWORKING OF SIGNALLING SYSTEMS�Q.600–Q.699��SPECIFICATIONS OF SIGNALLING SYSTEM No. 7�Q.700–Q.849��General�Q.700��Message transfer part (MTP)�Q.701–Q.709��Signalling connection control part (SCCP)�Q.711–Q.719��Telephone user part (TUP)�Q.720–Q.729��ISDN supplementary services�Q.730–Q.739��Data user part�Q.740–Q.749��Signalling System No. 7 management�Q.750–Q.759��ISDN user part�Q.760–Q.769��Transaction capabilities application part�Q.770–Q.779��Test specification�Q.780–Q.799��Q3 interface�Q.800–Q.849��DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1�Q.850–Q.999��PUBLIC LAND MOBILE NETWORK�Q.1000–Q.1099��INTERWORKING WITH SATELLITE MOBILE SYSTEMS�Q.1100–Q.1199��INTELLIGENT NETWORK�Q.1200–Q.1999��BROADBAND ISDN�Q.2000–Q.2999�����For further details, please refer to ITU-T List of Recommendations.

�ITU-T RECOMMENDATION Q.754

SIGNALLING SYSTEM No. 7 MANAGEMENT APPLICATION�SERVICE ELEMENT (ase) DEFINITIONS��

Summary

This Recommendation defines the application service element used by the management functions MRVT, SRVT and CVT defined in Recommendation Q.753. The ASE defines the management information used by these functions in messages across the SS No. 7 network.

The ASE interfaces with Transaction Capabilities (TCs) to provide the services used by the OMASE-User (defined in Recommendation Q.753), to allow inter-nodal SS No. 7 communication by MRVT, SRVT or CVT.

The main revisions to the 1993 version of this Recommendation are:

a)	revision of the compatibility rules to allow transparent transport of unrecognized parameters;

b)	definition of a new MRVT and SRVT message parameter to specify what information is required in any respective MRVR or SRVR message;

c)	definition of a new MRVR and SRVR message to be used if information is required beyond that specified for the 1993 MRVR and SRVR messages;

d)	definition of new MRVT and MRVR message parameters to indicate the route priorities;

e)	definition of new MRVA, MRVR, SRVA and SRVR parameters to allow parameters unrecognized in the MRVT or SRVT messages to be returned;

f)	definition of a new MRVT parameter requesting nodes to check if they have a route to the test initiator through the node from which they received the MRVT message (this allows checking for symmetrical routes).��

Source

ITU-T Recommendation Q.754 was revised by ITU-T Study Group 11 (1997-2000) and was approved under the WTSC Resolution No. 1 procedure on the 5th of June 1997.��

��

�FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU�T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU�T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

ã ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

�CONTENTS

	Page

1	Introduction		1

2	MTP		1

2.1	MTP Routing Verification Test (MRVT)		1

2.1.1	testRoute Action		2

2.1.2	routeTrace Event		5

2.1.3	routeTraceNew		7

3	SCCP		9

3.1	SCCP Routing Verification Test (SRVT) ASE		9

3.1.1	testRouteAction		9

3.1.2	routeTrace Event		14

3.1.3	routeTraceNew Event		17

4	Circuit management		20

4.1	Circuit Validation Test (CVT) ASE		20

4.1.1	cktValidTest CnfAction		20

4.1.2	Action arguments		20

4.1.3	Action results		20

4.1.4	Specific Error		21

5	Transaction capabilities		21

6	General definitions		22

6.1	Objects and operations		22

6.2	Primitives and procedures of the OMASE protocol		22

6.2.1	General		22

6.2.2	OM-EVENT-REPORT		22

6.2.3	OM-CONFIRMED-ACTION		24

6.3	Abstract syntax of the OMASE protocol		29

Annex A – Use of primitive interfaces		40

�Recommendation Q.754

SIGNALLING SYSTEM No. 7 MANAGEMENT APPLICATION�SERVICE ELEMENT (ASE) DEFINITIONS

(revised in 1997)

1	Introduction

Note that in the event of a conflict between Recommendations Q.753 and Q.754, Recommendation Q.754 will take precedence.

This Recommendation defines the OMAP ASE, OMASE. OMASE provides the services invoked using the OM�EVENT-REPORT and OM-CONFIRMED-ACTION primitives across the OMASE�User to OMASE boundary. (See Recommendation Q.753 for a diagram and mapping between the services invoked in the OMASE-User and those of OMASE.)

The OMASE services are derived from those defined in CMIP�.

The OMASE primitives are defined in clause 6, the formal syntax defined in Figure 3 uses Transaction Capabilities (TCs) OPERATION and ERROR. The interworking between OMASE and TC is also given in clause 6.

OMASE provides operations allowing the network administration, via the OMAP Management Process and the OMASE-User, to perform MTP and SCCP Routing Verification Tests (MRVT and SRVT), and Circuit Validation Tests (CVTs). This Recommendation contains the ASE definition for MRVT, SRVT and CVT.

The SRVT referred to here is for the specific test in 3.2.2/Q.753.

The arguments used for primitives across the OMAP Management Process to OMASE-User boundary, and for primitives across the OMASE-User to OMASE boundary, and between OMASE and TC contain the same information if they have the same name. Those arguments are defined in this Recommendation.

Messages between Signalling Points are encoded using the ASN.1 Basic Encoding Rules (BER), and octet string parameters are encoded as primitive (not constructed) elements.

2	MTP

2.1	MTP Routing Verification Test (MRVT)�

The MRV Test initiated at the test origin results in an OM-CONFIRMED-ACTION primitive being used from the OMASE-User to OMASE, which includes the testRoute command as a parameter. If a trace of the routes is requested, or a fault exists, the OM-EVENT-REPORT primitive is invoked at the test originator from OMASE, which includes the routeTrace or routeTraceNew event as a parameter.

�testRoute is specified using the CNF-ACTION macro defined in Figure 3, routeTrace is specified using the EVENT macro defined in Figure 3. Figure 3 is the definition of the OMASE module, and defines all parameters used in the protocol.

For MRVT, the ObjectClass indicates MTP Routing Tables, and the ObjectInstance contains the Point Code of the test destination. The testRoute Action makes use of the BEGIN (MRVT) message with result (MRVA) returning in an END. The routeTrace Event (MRVR) uses a BEGIN message with pre-arranged end.

2.1.1	testRoute Action

The testRoute Action is invoked to initiate an MTP routing verification test. At the initiator node, this invocation is requested by the Administration via the MIS-User or a local interface, through the OMAP Management Process and OMASE-User. At subsequent nodes, the Action is requested implicitly by the receipt of a testRoute Action invocation. A successful reply indicates successful completion of the test at the point it was invoked and, implicitly, at all subsequent points where the test was invoked. A failure indication is returned to indicate that the test failed in this or in a sebsequent node.

testRoute CNF-ACTION�Timer (T1�Class (1�Code (00000001��See Figure 3.

2.1.1.1	testRoute Action Arguments

2.1.1.1.1	initiatingSP

The initiatingSP identifies the original requester of the test. It is of type PointCode, defined as an octet string.

Parameter�Code��initiatingSP�10000000��Contents���Bit 0 contains the first bit of the Point Code.��Bit 1 contains the second bit of the Point Code, etc.��2.1.1.1.2	traceRequested

traceRequested indicates that a trace of all routes used to reach the destination should be reported to the originator (the routeTrace Event is described in 2.1.2). It is of type BOOLEAN.

Parameter�Code��traceRequested�10000001��Contents�Meaning��TRUE ((1)�trace was requested, return trace information on success and failure.��FALSE ((0)�trace not requested, return trace information only on failure.��2.1.1.1.3	threshold

The originator sets a maximum threshold level of Signalling Points (SPs) which are allowed to be crossed in the course of the test (including the initiator if it is an STP). This aids in detecting overly long routes. This threshold is an integral number of SPs, thus it is of type INTEGER.

�

Parameter�Code��threshold�10000010��2.1.1.1.4	pointCodesTraversed

As each intermediate SP is crossed, it adds its own Point Code to the list of Point Codes traversed. This aids in detecting loops and is also useful information in case of a failure or if a route trace is requested. It is a list of Point Codes, thus of type PointCodeList.

Parameter�Code��pointCodesTraversed�10100011��Contents���Sequence of Point Codes, tagged as "PointCode" with the contents indicating the exact Point Code.���2.1.1.1.5	routePriortyList

If the infoRequest parameter is included and requests it, as each SP is traversed it adds the priority of the route to the next SP into routePriorityList.

Parameter�Code��routePriorityList�10101100��Contents��Sequence of Priority, tagged as "Priority" with the contents indicating unknown, or first choice, or second choice, etc.��2.1.1.1.6	infoRequest

This optional parameter inserted, if at all, only by the SP initiating the test, indicates that the initiator can recognize MRVR messages occasioned by the routeTraceNew event type. The infoRequest parameter indicates which information is requested if an MRVR message should be sent to the initiator. It also can indicate which parameters should be updated as the MRVT messages traverse the network. Current values can be pointCode (bit 0 = 1), and/or pointCodeList (bit 1), and/or routePriorityList (bit 2).

Parameter�Code��infoRequest�10001101��Contents��Bit string containing any or all of the indicated values.��2.1.1.1.7	returnUnknownParams

This optional parameter is inserted, if at all, only by the SP initiating the test (and only if the infoRequest parameter is also included). It indicates which MRVT parameters a following node should return, if the following node does not recognize those parameters. The unrecognized MRVT parameters are to be copied into the (new) MRVR message (routeTraceNew) if the following node has occasion to return an MRVR (or in an MRVA message in the copyData parameter if the initiator is unknown to it). Bit 0 in returnUnknownParams indicates an MRVT parameter with tag value 15, bit 1 an MRVT parameter with tag value 16, etc.

�

Parameter�Code��returnUnknownParams�10001110��Contents��Bit string containing any indicated values.��2.1.1.1.8	directRouteCheck

This optional parameter indicates when TRUE that following nodes are requested to check that they have a route to the test initiator through the SP from which they received the prompting MRVT message.

Parameter�Code��directRouteCheck�10001111��Contents��Boolean, TRUE indicates that the check is required.��2.1.1.2	Action results

There are no contents in a successful return indication.

2.1.1.3	Action Errors

SpecificErrors are possible errors which can occur during this test, and which are unique to this test. These specific errors are in addition to the errors already identified in the OM�CONFIRMED�ACTION service and appear as parameters to the Processing Failure Error.

2.1.1.3.1	failure

failure indicates a condition of total failure, where no route worked correctly. Most often this will be used as a failure indication from the point which detects the error and does not invoke any further testRoute Actions. The failure SpecificError has with it a parameter to indicate the error condition causing the failure. This parameter, failureType, is represented as a bit string. The second parameter is to be used when failureType indicates the error unknownInitiatingSP. traceSent indicates whether or not a routeTrace Event has been invoked to report trace information. It is necessary to indicate this for this error since the node detecting the error cannot send the routeTrace, thus the previous node must. traceSent has type BOOLEAN. The third parameter is optional, it is present if failureType is "unknownInitiating SP" traceSent is FALSE, and the prompting MRVT message contained a requestInfo or a returnUnknownParams parameter (or both).

Specific Error�Code��failure�00000001��

Parameter�Code��failureType�10000000��

�

Parameter�Code��traceSent�10000001��Contents�Meaning��TRUE�The trace information was sent.��FALSE�The trace information was not sent.��

�Parameter�Code��copyData�10000100��Contents��An OCTET STRING containing parameters requested by the prompting MRVT message.��2.1.1.3.2	partialSuccess

This indication is given when at least one testRoute Cnf Action invocation failed and at least one succeeded (at least partially). In this case, each type of error that occurred will be noted and sent in the final reply. The format and contents of partial success are the same as failure.

Specific Error�Code��partialSuccess�00000010��2.1.2	routeTrace Event

The routeTrace Event reports trace information. Trace information consists of zero, one or more Point Codes, such as the Point Code detecting an error or the entire list of Point Codes traversed along a route. This event is invoked either at the explicit request of the originating node (indicated by traceRequested, see 2.1.1.1.2) or by failure at any point along the route. This event is not confirmed, therefore no replies to this invocation are expected (no error or success indications are expected).

routeTrace EVENT�Timer (0�Class (4�Code (00000010��2.1.2.1	Event information

2.1.2.1.1	success

On successful completion, the trace of the Point Codes (one or more) of the crossed SPs are included.

Parameter�Code��success�10100000��2.1.2.1.2	detectedLoop

When a loop is detected, the Point Codes (three or more) contained in the loop are included.

Parameter�Code��detectedLoop�10100001���2.1.2.1.3	excessiveLengthRoute

When an excessively long route is found (threshold exceeded), the entire route is included.

Parameter�Code��excessiveLengthRoute�10100010��2.1.2.1.4	unknownDestination

If the destination is unknown, no additional information is required, since the infoRequest parameter was not included in the testRoute CNF-ACTION request.

2.1.2.1.5	routeInaccessible

The Point Code of the node where the route was inaccessible is included.

����Parameter�Code��routeInaccessible�10000100��2.1.2.1.6	processingFailure

If a processing failure occurs, no additional information is required.

Parameter�Code��processingFailure�10000101��2.1.2.1.7	unknownInitiatingSP

The Point Code of the node detecting the unknown Initiating SP is included.

Parameter�Code��unknownInitiatingSP�10000110��2.1.2.1.8	timerExpired

The Point Code(s) of the node(s) from where no result for the testRoute Action was received is included.

Parameter�Code��timerExpired�10100111��2.1.2.1.9	sPNotAnSTP

If the intermediate SP receiving an MRVT message does not have the MTP transfer function, the list of crossed SPs to reach this SP is included.

The value "sPNotAnSTP" of failureType can also mean that the intermediate signalling point receiving an MRVT message is not authorized to transfer messages, received from the MRVT sender, with its MTP label OPC that of the test initiator and DPC that of the test destination.

Parameter�Code��sPNotAnSTP�10101000���2.1.2.1.10	maxNrMRVTestsAlready

This report is used by the signalling point receiving the MRVT message if the maximum number of MRV Tests nT are already running at the SP. It is reported as "processingFailure", see 2.1.2.1.6, if the prompting MRVT message (testRoute) did not contain the infoRequest parameter.

2.1.3	routeTraceNew

This report is used if the prompting testRoute action contained an infoRequest parameter.

routeTraceNew EVENT�Timer (0�Class (4�Code (00000100��2.1.3.1	Event information

2.1.3.1.1	success

On successful completion, the trace of the Point Codes (one or more) of the SPs crossed are included in pointCodeList (copied from the pointCodesTraversed parameter of the testRoute action).

routePriorityList is copied from the testRoute action, if present and requested in the infoRequest parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.2	detectedLoop

If a loop is detected, the point codes (3 or more) of the SPs in the loop are included in pointCodeList.

routePriorityList is copied from the testRoute action, if present and requested in the infoRequest parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.3	excessiveLengthRoute

If this error occurs, the entire route is copied from the testRoute action pointCodesTraversed parameter into the pointCodeList parameter.

routePriorityList is copied from the testRoute action, if present and requested in the infoRequest parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.4	unknownDestination

This is equivalent to unknownDestination of 2.1.2.1.4. If the infoRequest parameter of the prompting testRoute action requested it, the pointCodesTraversed parameter of the testRoute action is copied into pointCodeList.

routePriorityList is copied from the testRoute action, if present and requested in the infoRequest parameter.

�If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.5	routeInaccessible

If this event is reporting just one inaccessible SP, its point code is placed in pointCode.

If the event is reporting more than one inaccessible SP (and hence the prompting testRoute action indicated that the originator could accept it), the list of all such inaccessible SPs is put into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.6	processingFailure

If the test cannot be run due to local conditions, the event reports a processing failure. This includes rejection of the testRoute action by SCCP or TC at a remote SP.

If the testRoute action infoRequest parameter was present, and had bit 0 set to 1, the point code of the SP where the test failed is put into the pointCode parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.7	unknownInitiatingSP

The point code of the SP detecting the unknown initiator is returned in the pointCode parameter.

If the prompting testRoute result contained a copyData parameter, this is copied into the routeTraceNew copyData parameter.

2.1.3.1.8	timerExpired

The point codes of the SPs from which no result of the testRoute actions were received are included into pointCodeList.

2.1.3.1.9	sPNotAnSTP

This error occurs if the intermediate SP does not have the STP function, or it is known that it is not authorized to transfer messages from the test initiator to the test destination.

The pointCodesTraversed parameter of the prompting testRoute action is copied into pointCodeList.

routePriorityList is copied from the testRoute action, if present and requested in the infoRequest parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

2.1.3.1.10	indirectRoute

This report is used if the direct route test was requested and the SP receiving the MRVT message did not have a route to the test initiator directly through the MRVT message sender. The identity of the prompting MRVT message sender is included in the pointCode parameter, the identity of the SP detecting no direct route is the OPC in the MRVR message's MTP label.

�2.1.3.1.11	maxNrMRVTestsAlready

This report is used by the signalling point receiving the MRVT message if the maximum number of MRV Tests �EMBED Equation ��� are already running at the SP.

If the testRoute action infoRequest parameter was present, and had bit 0 set to 1, the point code of the SP where the test failed is put into the pointCode parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3	SCCP

3.1	SCCP Routing Verification Test (SRVT) ASE

This specific SRVT’s functions are defined in 3.2.2/Q.753. The SRV Test initiated at the test origin results in an OM�CONFIRMED�ACTION primitive being used from the OMASE-User to OMASE, which includes the testRoute command as a parameter. If a trace of the routes is requested, or a fault exists, the OM-EVENT-REPORT primitive is invoked at the test originator from OMASE, which includes the routeTrace event as a parameter.

testRoute is specified using CNF-ACTION defined in Figure 3, routeTrace is specified using EVENT defined in Figure 3.

The ObjectClass indicates SCCP Global Title Translation Tables and the ObjectInstance contains the Global Title Indicator and Tested Global Title. The GTI is coded as defined in the SCCP Address Indicator. The testRoute Action (SRVT) makes use of the BEGIN message with the result (SRVA) returning in an END. The routeTrace Event (SRVR) uses a BEGIN message with prearranged end.

3.1.1	testRouteAction

The testRoute Action is invoked to initiate an SCCP Routing Verification Test. At the initiator node, this invocation is requested by the Administration via the MIS-User or a local interface, through the OMAP Management Process and OMASE-User. At subsequent nodes, the Action is requested implicitly by the receipt of a testRoute Action invocation. A successful reply indicates successful completion of the test at the point it was invoked and, implicitly, at all subsequent points where the test was invoked. A failure indication is returned to indicate that the test failed in this or in a subsequent node.

testRoute CNF-ACTION�Timer (T2�Class (1�Code (00000001��3.1.1.1	testRoute action arguments

3.1.1.1.1	initiatingSP

The initiatingSP identifies the test initiator. It is of type PointCode.

Parameter�Code��initiatingSP�10000000��Contents���Bit 0 contains the first bit of the Point Code.

Bit 1 contains the second bit of the Point Code, etc.����3.1.1.1.2	traceRequested

traceRequested indicates that a trace of all routes used to reach the destination should be reported. It is of type BOOLEAN.

Parameter�Code��traceRequested�10000001��Contents�Meaning��TRUE ((1)�trace was requested, return trace information on success and failure.��FALSE ((0)�trace not requested, return trace information only on failure.��3.1.1.1.3	threshold

The originator sets a maximum threshold level of Translation Signalling Points (TSPs) which are allowed to be crossed in the course of the test (including the initiator if it is an SCCP Relay Node). This aids in detecting overly long routes. This threshold is an integral number of SP's, thus it is of type INTEGER.

Parameter�Code��threshold�10000010��3.1.1.1.4	pointCodesTraversed

As each Translation SP is crossed, it adds its own Point Code to the list of Point Codes traversed. This aids in detecting loops and is also useful information in case of a failure or if a route trace is requested. It is a list of Point Codes, thus of type PointCodeList. This PointCodeList could be empty.

Parameter�Code��pointCodesTraversed�10100011��Contents���Sequence of Point Codes, tagged as "PointCode" with the contents indicating the exact Point Code.���3.1.1.1.5	formIndicator

The formIndicator identifies the form of the SRVT message, i.e. either Request, Verify or Compare. lt is of type INTEGER, with the values defined as below.

Parameter�Code��formIndicator�10000100��Contents���Value 0 (Compare.���Value 1 (No Compare.���3.1.1.1.6	mtpBackwardRoutingRequested

The mtpBackwardRoutingRequested identifies whether MTP backward routing towards the OPC is required for test success. It is of type BOOLEAN.

�

Parameter�Code��mtpBackwardRoutingRequested�10000101��Contents���TRUE ((1) Routing Requested.���FALSE ((0) Routing Not Requested.���3.1.1.1.7	testInitiatorGT

The testInitiatorGT identifies the Global Title Indicator and the initiator's Global Title. It is of type OCTET STRING.

Parameter�Code��testInitiatorGT�10000110��Contents���Octet 1 bits 3 through 6 (GlobalTitle Indicator.���Octet 2, 3, ... (Initiator Global Title.���3.1.1.1.8	destinationPC

The destinationPC identifies the Destination Point Code (PPC or TPC). It is of type PointCode.

Parameter�Code��destinationPC�10000111��Contents���Bit 0 contains the first bit of the Point Code.���Bit 1 contains the second bit of the Point Code, etc.���3.1.1.1.9	destinationSSN

The destinationSSN identifies the destination Subsystem Number. It is of type OCTET STRING.

Parameter�Code��destinationSSN�10001000��Contents��Bit 0 contains the first bit of the Subsystem Number.���Bit 1 contains the second bit of the Subsystem Number, etc.���3.1.1.1.10	backupDPC

The backupDPC identifies the backup Destination Point Code (SPC). It is of type PointCode.

Parameter�Code��backupDPC�10001001��Contents���Bit 0 contains the first bit of the Point Code.���Bit 1 contains the second bit of the Point Code, etc.����3.1.1.1.11	backupSSN

The backupSSN identifies the backup destination Subsystem Number. It is of type OCTET STRING.

Parameter�Code��backupSSN�10001010��Contents���Bit 0 contains the first bit of the Subsystem Number.���Bit 1 contains the second bit of the Subsystem Number, etc.���3.1.1.1.12	originalGT

The originalGT field is only present in an SRVT message if translation of a GT in the called party address yields or has already yielded a replacement GT.

In this case, the field in an SRVT message to be sent out is as follows:

i)	if the SRVT message to be sent out is not the compare form, and the test is initiated by receipt of an SRVT message containing an originalGT, then the field is copied across; or

ii)	in all other cases, the originalGT sent out is the GT of the called party address for the SRVT message before translation.

The field is used as the GT of the calling party address in any SRVR message sent and, for the compare form of SRVT message, by the mate TSP receiving it to check that its translation yields the GT in the called party address field of the compare SRVT message received.

The type of originalGT is GlobalTitle.

Parameter�Code��originalGT�10001011��Contents���Octet 1 bits 3 through 6 (Global Title Indicator.���Octet 2, 3, ... (Original Global Title.���3.1.1.1.13	inputGT

The inputGT, used only in the SRVT compare form, identifies the Test GTI (GT prior to translation at a TSP. It is of type OCTET STRING.

Parameter�Code��inputGT�10010000��Contents���Octet 1 bits 3 through 6 (Global Title Indicator.���Octet 2, 3, ... (Input Global Title to TSP.���3.1.1.1.14	infoRequest

This optional parameter inserted, if at all, only by the SP initiating the test, indicates that the initiator can recognize SRVR messages occasioned by the routeTraceNew event type. The infoRequest parameter indicates which information is requested if an SRVR message should be sent to the initiator. It also can indicate which parameters should be updated as the SRVT messages traverse the network. Current values can be pointCode (bit 0 (1), and/or pointCodeList (bit 1).

�

Parameter�Code��infoRequest�10001101��Contents���Bit string containing any or all of the indicated values.���3.1.1.1.15	returnUnknownParams

This optional parameter is inserted, if at all, only by the SP initiating the test (and only if the infoRequest parameter is also included). It indicates which SRVT parameters a following node should return, if the following node does not recognize those parameters. The unrecognized SRVT parameters are to be copied into the (new) SRVR message (routeTraceNew) if the following node has occasion to return an SRVR (or in an SRVA message in the copyData parameter if the initiator is unknown to it). Bit 0 in returnUnknownParams indicates an SRVT parameter with tag value 15, bit 1 an SRVT parameter with tag value 16, etc.

Parameter�Code��returnUnknownParams�10001110��Contents���Bit string containing any indicated values.���3.1.1.2	Action results

There are no contents in a successful return indication.

3.1.1.3	Action Errors

SpecificErrors are possible errors which can occur during this test, and which are unique to this test. These specific errors are in addition to the errors already identified in the OM�CONFIRMED�ACTION service and appear as parameters to the Processing Failure Error.

3.1.1.3.1	failure

failure indicates a condition of failure, where a Translation could not be successfully done, or was incorrect. Most often this will be used as a failure indication from the point which detects the error and does not invoke any further testRoute Actions. The failure SpecificError has with it a parameter to indicate the error condition causing the failure. This parameter, failureType, is represented as a bit string. In addition, the second parameter is to be used when failureType indicates the error Unknown Initiating SP. traceSent indicates whether or not a routeTrace Event has been invoked to report trace information. It is necessary to indicate this for this error since the node detecting the error cannot send the routeTrace, thus the previous node must. traceSent is a type of BOOLEAN and is optional.

Specific Error�Code��failure�00000001��

Parameter�Code��failureType�10000000��

�

Parameter�Code��traceSent�10000001��Contents�Meaning��TRUE�The trace information was sent.��FALSE�The trace information was not sent.��3.1.1.3.2	partialSuccess

This indication is given when at least one testRoute Cnf Action invocation failed and at least one succeeded (at least partially). In this case, each type of error that occurred will be noted and sent in the final reply. The format and contents of partial success are the same as failure.

Specific Error�Code��partialSuccess�00000010��3.1.2	routeTrace Event

The routeTrace Event reports trace information. Trace information consists of one or more Point Codes, such as the entire list of Translation Point Codes traversed along a route. This event is invoked either at the explicit request of the originating node (indicated by traceRequested, see 3.1.1.1.2) or by failure at any point along the route. This event is not confirmed, therefore no replies to this invocation are expected (no error or success indications are expected).

routeTrace EVENT�Timer (0�Class (4�Code (00000010��3.1.2.1	Event information

3.1.2.1.1	success

On successful completion, the trace of the Point Codes (one or more) of the crossed SCCP Relay Nodes are included.

Parameter�Code��success�10100000��3.1.2.1.2	detectedLoop

When a loop is detected, the Point Codes (three or more) contained in the loop are included.

Parameter�Code��detectedLoop�10100001��3.1.2.1.3	excessiveLengthRoute

When an excessively long route is found (threshold exceeded), the entire route is included.

Parameter�Code��excessiveLengthRoute�10100010���3.1.2.1.4	unknowndestination

If the destination is unknown, no additional information is required. For the SRVT, this refers to the case when no translation data exist for the GTI (GT.

Parameter�Code��unknownDestination�10000011��3.1.2.1.5	routeInaccessible

The Point Code of the node where the route was inaccessible is included.

Parameter�Code��routeInaccessible�10000100��3.1.2.1.6	processingFailure

If a processing failure occurs, no additional information is required.

Parameter�Code��processingFailure�10000101��3.1.2.1.7	unknownInitiatingSP

The Point Code of the node detecting the unknown initiating Signalling Point is included.

Parameter�Code��unknownInitiatingSP�10000110��3.1.2.1.8	timerExpired

The Point Code(s) of the node(s) from where no result for the testRoute Action was received is included.

Parameter�Code��timerExpired�10100111��3.1.2.1.9	wrongSP

The complete list of Translation SPs traversed in the route to the invalid SP is included.

Parameter�Code��wrongSP�10101000��3.1.2.1.10	incorrectTranslation-Primary

The complete list of Translation SPs traversed in the route to the incorrect primary destination is included.

Parameter�Code��incorrectTranslation-Primary�10101001���3.1.2.1.11	incorrectTranslation-Secondary

The complete list of Translation SPs traversed in the route to the incorrect secondary destination is included.

Parameter�Code��incorrectTranslation-Secondary�10101010��3.1.2.1.12	incorrectTranslation-Intermediate

The complete list of Translation SPs traversed in the route to the incorrect intermediate point is included.

Parameter�Code��incorrectTranslation-Intermediate�10101011��3.1.2.1.13	notPrimaryDestination

The complete list of Translation SPs traversed in the route to the invalid primary destination is included.

Parameter�Code��notPrimaryDestination�10101100��3.1.2.1.14	notSecondaryDestination

The complete list of Translation SPs traversed in the route to the invalid secondary destination is included.

Parameter�Code��notSecondaryDestination�10101101��3.1.2.1.15	notRecognizedPrimary

The complete list of Translation SPs traversed in the route to the secondary destination is included.

Parameter�Code��notSecondaryDestination�10101110��3.1.2.1.16	notRecognizedSecondary

The complete list of Translation SPs traversed in the route to the primary destination is included.

Parameter�Code��notRecognizedSecondary�10101111��3.1.2.1.17	routingProblem

The complete list of Translation SPs traversed in the route to the possible routing problem is included. This occurs when the Point Code from the translation is not recognized.

�

Parameter�Code��routingProblem�10110000��3.1.3	routeTraceNew Event

This report is used if the prompting testRoute action contained an infoRequest parameter.

routeTraceNew EVENT�Timer (0�Class (4�Code (00000100��3.1.3.1	Event information

The information included is as for routeTrace, but with the "result" parameter indicating the result, and the data associated with the result included in the optional parameters. The copyData parameter contains, if present, parameters from the prompting testRoute action that were not understood, and that were requested to be returned by the returnUnknownParams in the testRoute action. One extra result over routeTrace is currently defined for routeTraceNew, this is maxNrSRVRTestsAlready.

3.1.3.1.1	success

On successful completion, the trace of the Point Codes (one or more) of the SPs crossed are included in pointCodeList (copied from the pointCodesTraversed parameter of the testRoute action).

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.2	detectedLoop

If a loop is detected, the point codes (three or more) of the SPs in the loop are included in pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.3	excessiveLengthRoute

If this error occurs, the entire route is copied from the testRoute action pointCodesTraversed parameter into the pointCodeList parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.4	unknownDestination

If the infoRequest parameter of the prompting testRoute action requested it, the pointCodesTraversed parameter of the testRoute action is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.5	routeInaccessible

If this event is reporting just one inaccessible SP, its point code is placed in pointCode.

�If the event is reporting more than one inaccessible SP (and hence the prompting testRoute action indicated that the originator could accept it), the list of all such inaccessible SPs is put into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.6	processingFailure

If the test cannot be run due to local conditions, the event reports a processing failure. This includes rejection of the testRoute action by SCCP or TC at a remote SP.

If the testRoute action infoRequest parameter was present, and had bit 0 set to 1, the point code of the SP where the test failed is put into the pointCode parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.7	unknownInitiatingSP

The point code of the SP detecting the unknown initiator is returned in the pointCode parameter.

If the prompting testRoute result contained a copyData parameter, this is copied into the routeTraceNew copyData parameter.

3.1.3.1.8	timerExpired

The point codes of the SPs from which no result of the testRoute actions were received are included into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.9	wrongSP

The pointCodesTraversed parameter of the prompting testRoute action is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.10	incorrectTranslation-Primary

The complete list of Translation SPs traversed in the route to the incorrect primary destination is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.11	incorrectTranslation-Secondary

The complete list of Translation SPs traversed in the route to the incorrect secondary destination is copied into pointCodeList.

�If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.12	incorrectTranslation-Intermediate

The complete list of Translation SPs traversed in the route to the incorrect intermediate point is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.13	notPrimaryDestination

The complete list of Translation SPs traversed in the route to the invalid primary destination is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.14	notSecondaryDestination

The complete list of Translation SPs traversed in the route to the invalid secondary destination is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.15	notRecognizedPrimary

The complete list of Translation SPs traversed in the route to the secondary destination is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.16	notRecognizedSecondary

The complete list of Translation SPs traversed in route to the primary destination is copied into pointCodeList.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

3.1.3.1.17	routingProblem

The complete list of Translation SPs traversed in the route to the possible routing problem is copied into pointCodeList. This occurs when the Point Code from the translation is not recognized.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

�3.1.3.1.18	maxNrSRVTestsAlready

This report is used by the signalling point receiving the SRVT message if the maximum number of SRV Tests nSRVT are already running at the SP.

If the testRoute action infoRequest parameter was present, and had bit 0 set to 1, the point code of the SP where the test failed is put into the pointCode parameter.

If there are parameters in the prompting testRoute action that are not understood, and testRoute contains a returnUnknownParams parameter which requests them, they are copied into the copyData parameter.

4	Circuit management

4.1	Circuit Validation Test (CVT) ASE

The Circuit Validation Test ASE provides the services accessed via OM-CONFIRMED-ACTION as described in Figure 3. lt uses an instance based on a Circuit Management Object Class defined in Recommendation Q.751. The BaseManagedObjectClass indicates cvt-Cic-Tables-1992, and the BaseManagedObjectInstance identifies the CktGrpInfo (circuit group information identifying the predefined identifier for the circuit and its group agreed between the exchanges at the circuit group's ends) and its CIC known in the sending SP.

4.1.1	cktValidTest CnfAction

The Circuit Validation Test Request and subsequent return of the Circuit Validation Response is mapped into a confirmed action. The action is the request for the far-end test.

cktValidTestCNF-ACTION�Timer (Tc�Class (1�Code (00000001��

See 4.2/Q.753 for the possible values of Tc and timer.

	cktValidTest CNF-ACTION ::=

			{

			ACTIONARG SEQUENCE {�						requestingSP		RequestingSP,�						timer				Timer OPTIONAL,�						…}�

			ACTIONRESULT				Success

			SPECIFICERRORS			{ failure }

			CODE			3�			}

		-- Timer = Tc , class = 1

4.1.2	Action arguments

The requesting SP is the Point Code of the signalling point initiating the test procedure. It is of type Octet String as stated below.

		RequestingSP ::= OCTET STRING

4.1.3	Action results

The Action Results are returned in a return result component upon success. The contents of the two parameters are to be defined based on the CVT procedure.

�Success ::= SEQUENCE �			{�			cktGrpInfo	[0] IMPLICIT CktGrpInfo,�			cICName	[1] IMPLICIT OCTET STRING OPTIONAL,�			…}

Note that CktGrpInfo is defined as OCTET STRING.

4.1.4	Specific Error

The specific error indicates the failure and reason for failure. The contents of the two parameters are to be defined based on the CVT procedure.

Failure ::= SPECIFIC-ERROR�		{�		PARAMETER SEQUENCE	{cktGrpInfo	[0] IMPLICIT CktGrpInfo,�							cICName	[1] IMPLICIT OCTET STRING OPTIONAL,�			…}�		CODE	3�		}

Note that CktGrpInfo is defined as OCTET STRING.

The CVT failure reasons are:

a)	CIC not assigned at near end;

b)	wrong near end data for circuit;

c)	valid tone not received at near end;

d)	overall test timer Tc expired before CVR received;

e)	CVR message received before synchronization achieved in bit pattern test;

f)	Tc expired before synchronization is achieved in bit pattern test;

g)	bit pattern still being received when Tc expires;

h)	bit pattern still being received when CVR message is received;

i)	tone being received when Tc expires;

j)	tone being received when CVR message is received;

k)	near end CIC and far end CIC do not match (near end check on receipt of CVR message);

l)	CVR message received indicating failure:

–	CIC not assigned at far end;

–	wrong far end data for circuit;

–	group characteristics unavailable at far end;

m)	failure – unspecified.

5	Transaction capabilities

For further study.

The response in OMAP to local broadcast of N-STATE and N-PCSTATE initiated by SCCP is also for further study.

�6	General definitions

6.1	Objects and operations

OMAP runs tests on objects such as the MTP and SCCP routing tables. These objects are described here as "Object Classes" and are identified by an object identifier which specifies this Recommendation and the type of object. This structure is shown below for the OMAP object identifiers mtp-Routing-Tables, sccp-Routing-Tables and cvt�Cic�Tables.

oMAP�OBJECT IDENTIFIER :: ({ itu-t recommendation q 754 }��mtp-Routing-Tables-1992�OBJECT IDENTIFIER :: ({ oMAP 0 }��sccp-Routing-Tables-1992�OBJECT IDENTIFIER :: ({ oMAP 1 }��cvt-Cic-Tables-1992�OBJECT IDENTIFIER :: ({ oMAP 5 }��

The Object Class of MTP Routing Tables is 0011857200 (hexadecimal), for SCCP Routing Tables is 0011857201 (hexadecimal), and for CVT CIC Tables is 0011857205 (hexadecimal). See Recommendations X.680 and X.690.

Tables 1 and 2 show the OM-primitives, Figure 1 shows the OMAP operations derived from CMIP (ISO/IEC 9596), and Figure 3 contains a formal syntax of OMASE.

Currently Defined Operations��0	eventReport��7	confirmedAction��Figure 1/Q.754 – OMAP operations�derived from CMIP

6.2	Primitives and procedures of the OMASE protocol

6.2.1	General

The OMASE protocol uses the TC-service as defined in Recommendation Q.771. The Invoke ID and the Dialogue ID correspond with those defined for the TC-service.

OMASE is modelled using a Protocol Machine (referred to as OMPM below). The abbreviation APDU stands for Application Protocol Data Unit in what follows, it refers to the contents of the primitive(s) passed between OMASE and TC.

Figure A.1 shows the model including TC and SCCP, the OMPM resides in OMASE. Figure A.2 shows an example of particular instances of the primitives in an MRV Test (but without OM�EVENT-REPORT).

6.2.2	OM-EVENT-REPORT

6.2.2.1	Service primitive

The OM-EVENT-REPORT primitive used between the OMASE-User and OMASE is defined in Table 1.

The specific event that occurred is interpreted in the context of the object class specified.

�

Table 1/Q.754 – OM-EVENT-REPORT parameters��Parameter name�Req/Ind��CallingPartyAddress�M��CalledPartyAddress�M��DialogueID�M��InvokelD�M��ManagedObjectClass�M��ManagedObjectInstance�M��EventType�M��EventTime�O��EventInfo�O��Parameter definitions

CallingPartyAddress: As defined in the calling address of 2.2/Q.711.

CalledPartyAddress: As defined in the called address of 2.2/Q.711. The above addresses serve to identify OMAP at the calling and called SP respectively. For MRVT they can both be in the form of point code plus (OMAP) subsystem number, for SRVT they are in a form suitable for the type of SCCP routing applied in the test.

DialogueID: As defined in Recommendations Q.771-Q.775. It maps to Transaction ID, defined in Recommendation Q.772.

InvokeID: As defined in Recommendation Q.772.

ManagedObjectClass: Identifies the class of objects for which this event is defined.

ManagedObjectInstance: Identifies the object instance on which the event is reported.

EventType: Specifies the particular event that is being reported by the object instance.

EventTime: Specifies the time at which the event was generated.

EventInfo: Provides additional event specific information.

6.2.2.2	Event reporting procedure

6.2.2.2.1 Receipt of OM-EVENT-REPORT request

The event reporting procedure is initiated by receipt of the OM-EVENT-REPORT request primitive. When this occurs, the OMPM constructs the APDU requesting the eventReport operation, and transmits the APDU using the TC-INVOKE and TC-BEGIN service.

The TC-INVOKE request primitive contains the following parameters and values:

•	Dialogue ID – Defined by the OMASE-User.

•	Invoke ID – Defined by the OMASE-User.

•	Operation – Set to eventReport.

•	Class – Set to 4.

•	Parameters – Those following the word "PARAMETER" in the definition of eventReport. The value of the parameter eventType specifies which action is to be performed – it should indicate routeTrace for the procedures defined at present.

•	Timeout – Set to 0 for both MRVT and SRVT.

The TC-BEGIN request primitive uses the following parameters and values:

•	Destination address – As received in the OM-EVENT-REPORT request primitive CalledPartyAddress.

•	Originating address – As received in the OM-EVENT-REPORT request primitive CallingPartyAddress.

•	Dialogue ID – As in the TC-INVOKE.

The N-UNITDATA request primitive ultimately issued to the SCCP due to the receipt of these TC request primitives should contain the Sequence control parameter set to indicate "sequence guaranteed", and the Return option parameter should be set to indicate "discard message on error". See 2.2.2/Q.711.

After transmission of the APDU, the OMPM terminates the dialogue using the TC-END request primitive with parameters Dialogue ID and Termination, the latter indicating "prearranged end".

6.2.2.2.2	Receipt of TC-BEGIN with TC-INVOKE indication

On receipt of a well formed APDU requesting the eventReport operation from the TC-BEGIN and TC-INVOKE indication primitives, the OMPM issues an OM-EVENT-REPORT indication primitive. If the APDU is not well formed, the OMPM discards it.

The OMPM terminates the dialogue with a TC-END request primitive with parameters Dialogue ID and Termination, the latter indicates "prearranged end".

6.2.2.2.3	Receipt of TC-BEGIN with TC-L-REJECT indication

In this case, the OMPM issues a TC-END request primitive with parameters Dialogue ID and Termination, the latter indicating "prearranged end".

6.2.2.2.4	Receipt of TC-P-ABORT indication

In this case, the OMPM ignores the TC-P-ABORT.

6.2.3	OM-CONFIRMED-ACTION

6.2.3.1	Service primitive

The OM-CONFIRMED-ACTION service is shown in Table 2. The specific action to be performed is interpreted in the context of the object class specified. This service is a confirmed service (a report of success or failure is always sent).

�

Table 2/Q.754 – OM-CONFIRMED-ACTION service��Parameter name�Req/Ind�Res/Con��CallingPartyAddress�M�M��CalledPartyAddress�M�M��DialogueID�M�M��InvokeID�M�M��AccessControl�O�–��BaseManagedObjectClass�M�–��BaseManagedObjectInstance�M�–��ActionInfo�M�–��ActionResult�–�Ma)��ActionError�–�Mb)��Timer�Mc)�–��a)	Mandatory in Return Result component (may be empty).

b)	Mandatory in Return Error component.

c)	This parameter is only in the request primitive.����Parameter definitions

CallingPartyAddress: See Table 1.

CalledPartyAddress: See Table 1.

DialogueID: Mapped by TCAP into transaction ID as defined in Recommendation Q.772.

InvokeID: As defined in Recommendation Q.772.

AccessControl: Information to be used as input to access control functions.

BaseManagedObjectClass: Identifies the class of objects for which this action is defined.

BaseManagedObjectInstance: Identifies the object instance on which the action is to be performed.

ActionInfo: Is a sequence of ActionType and (optional) ActionInfoArg. ActionType is defined by the CNF-ACTION macro, and specifies a particular action that is to be performed on the object instance. ActionInfoArg contains the parameters for the action to be performed.

ActionResult: This field contains the result of the successful action performed, as appropriate.

ActionError: This field indicates error or problem status information if the action did not successfully complete.

Timer: This parameter contains the particular value for the timeout period waiting for the response. It is set to T1 for MRVT, T2 for SRVT, or Tc for CVT.

The value is given in Recommendation Q.753.

�6.2.3.2	Procedures for confirmed action

6.2.3.2.1	Receipt of OM-CONFIRMED-ACTION request

The confirmedAction procedure is initiated by the receipt of the OM-CONFIRMED-ACTION request primitive. In this case, the OMPM constructs an APDU requesting the confirmedAction operation, and transmits the APDU using the TC�INVOKE and TC-BEGIN service.

The TC-INVOKE request primitive contains the following parameters and values:

•	Operation – Takes the value of confirmedAction.

•	Class – Value is 1.

•	Parameters – Corresponds with the parameters of confirmedAction as defined after the keyword "PARAMETER" of the operation definition. The value "testRoute" is obtained by derivation from CNF-ACTION of the localForm of ActionTypeID from ActionType of ActionInfo.

•	Timeout – Is copied from the parameter "Timer" in the OM-CONFIRMED-ACTION request.

•	The Invoke ID and Dialogue ID are copied from the OM-CONFIRMED-ACTION request.

The TC-BEGIN request primitive uses the following parameters and values:

•	Dialogue ID – As in the TC-INVOKE.

•	Destination address – The CalledPartyAddress of the OM-CONFIRMED-ACTION request.

•	Originating address – The CallingPartyAddress of the OM-CONFIRMED-ACTION request.

The N-UNITDATA request primitive ultimately issued to the SCCP due to the receipt of these TC request primitives should contain the Sequence control parameter set to indicate "sequence not guaranteed", and the Return option parameter should be set to indicate "return message on error". See 2.2.2/Q.711.

6.2.3.2.2	Receipt of TC-BEGIN with TC-INVOKE indication

In this case, if the APDU is well formed and requests the confirmedAction operation, the OMPM issues an OM�CONFIRMED-ACTION indication primitive to the OMASE-User.

If the APDU is not well formed, the OMPM ignores the TC indications.

An implementation-dependent mechanism allied to that defined in 3.3.4/Q.774 should cater for any local problems.

If the APDU contains extra parameters, they are passed on transparently by the OMPM to the OMASE-User.

6.2.3.2.3	Receipt of OM-CONFIRMED-ACTION response

The OM-CONFIRMED-ACTION response primitive can contain either the ActionResult parameter, or the ActionError parameter.

The ActionResult parameter indicates that the execution of the operation was successful, and the OMPM issues a TC�RESULT-L request primitive. If the test was a CVT, the following parameters are included in the TC-RESULT-L:

•	Operation – Has the value of confirmedAction.

•	Parameters – Corresponds to the parameter Success of ACTIONRESULT for the CVT.

�The presence of the ActionError parameter indicates that the operation was unsuccessful, and the OMPM issues a TC�U�ERROR request primitive with the following parameters:

•	Error – Takes the appropriate error value from the set defined after the word "ERRORS" of the operation definition.

•	Parameters – Corresponds with the parameters defined after the word "PARAMETER" of the definition of the error.

The result of the operation is transmitted by the OMPM issuing a TC-END request with parameters Dialogue ID and Termination, the latter indicating "basic end".

The N-UNITDATA request primitive ultimately issued to the SCCP due to the receipt of these TC request primitives should contain the Sequence control parameter set to indicate "sequence guaranteed", and the Return option parameter should be set to indicate "discard message on error". See 2.2.2/Q.711.

6.2.3.2.4	Receipt of TC-END with TC-RESULT-L indication

In this case, the OMPM if the APDU is well formed, issues an OM-CONFIRMED-ACTION confirm primitive with parameter ActionResult to the OMASE-User (including the Dialogue ID).

If the APDU is not well formed, the OMPM ignores the TC primitives�.

6.2.3.2.5	Receipt of TC-END with TC-U-ERROR indication

If the APDU is well formed, the OMPM issues an OM-CONFIRMED-ACTION confirm primitive with parameter ActionError (and Dialogue ID) to the OMASE-User.

If the APDU is not well formed, the OMPM ignores the TC primitives� NOTEREF _Ref397929074 �3�.

6.2.3.2.6	Receipt of TC-L-CANCEL indication

This occurs if the invocation timer expires.

In this case, the OMPM issues an OM-CONFIRMED-ACTION confirm primitive, with the specific error "failure" for CNF-ACTION, and if the operation invoked was testRoute, the parameter failureType indicates timerExpired.

The OMPM terminates the dialogue with a TC-END request primitive, with the Termination parameter indicating "prearranged end".

6.2.3.2.7	Receipt of TC-BEGIN or TC-END with TC-L-REJECT indications

Receipt of TC-BEGIN with TC-L-REJECT indication is illustrated in Figure 2a.

� EMBED Designer.Drawing.7 ���

Figure 2a/Q.754

�If the OMPM receives a TC-L-REJECT indication with a TC-BEGIN indication, the OMPM terminates the dialogue by issuing a TC-END request primitive with the Termination parameter indicating "prearranged end".

If the OMPM receives a TC-L-REJECT indication with a TC-END indication, it issues an OM�CONFIRMED-ACTION confirm primitive with the specific error "failure" of CNF-ACTION, and if testRoute was invoked, the parameter failureType in the confirm primitive indicates "processingFailure". This is illustrated in Figure 2b.

� EMBED Designer.Drawing.7 ���

Figure 2b/Q.754

6.2.3.2.8	Receipt of TC-END with TC-R-REJECT indication

In this case, the OMPM issues an OM-CONFIRMED-ACTION confirm primitive with the specific error "failure" of CNF-ACTION, and if testRoute was invoked, the parameter failureType in the confirm primitive indicates "processingFailure".

6.2.3.2.9	Receipt of TC-P-ABORT indication

This is illustrated by the two diagrams of Figure 2c.

� EMBED Designer.Drawing.7 ���

Figure 2c/Q.754

�In this case, the OMPM issues an OM-CONFIRMED-ACTION confirm primitive with the specific error "failure" of CNF-ACTION, and if testRoute was invoked, the parameter failureType in the confirm primitive indicates "processingFailure".

6.2.3.2.10	Receipt of TC-NOTICE

In this case, the OMPM issues an OM-CONFIRMED-ACTION confirm primitive with the specific error "failure" of CNF-ACTION, and if testRoute was invoked, the parameter failureType in the confirm primitive indicates "processingFailure".

Error definitions

A number of errors have been referred to in the definition of the two OM-services. These errors are defined in this subclause.

Definitions

noSuchObjectClass: The object class in the Invoke APDU is not recognized by the receiving end.

noSuchObjectInstance: While the object class in the Invoke APDU is recognized, there is no corresponding object instance of that class at the receiving end.

accessDenied: Access to the resource is not allowed.

processingFailure: A failure occurred while processing a specific action or event. The failure indicators are action or event specific.

noSuchAction: The action type is not supported by or known to the receiving end.

noSuchArgument: The argument specified is not known to or supported by the receiving end.

invalidArgumentValue: The argument value is not appropriate for the receiving end.

6.3	Abstract syntax of the OMASE protocol

See Figure 3.

�-- OMASE protocol --�OMASE { itu-t(0) recommendation q 754 omase(0) version2(2) }

DEFINITIONS EXPLICIT TAGS::=�BEGIN�-- TCAP definitions -- �EXPORTS EVERYTHING;

-- the OPERATION and ERROR information objects defined here are equivalent to the respective MACROs in�-- TCAPMessages {ccitt recommendation q 773 modules(2) messages(1) version2(2) } of Rec. Q.773 (1993) --

OPERATION ::= CLASS�{�		&ArgumentType		OPTIONAL,�		&ResultType		OPTIONAL,�		&Errors			ERROR OPTIONAL,�		&Linked			OPERATION OPTIONAL,�		&operationCode		Code UNIQUE OPTIONAL�}�WITH SYNTAX�{�		[PARAMETER	&ArgumentType]�		[RESULT		&ResultType]�		[ERRORS		&Errors]�		[LINKED		&Linked]�		[CODE		&operationCode]�}�

ERROR ::= CLASS�{�		&ParameterType		OPTIONAL,�		&errorCode			Code UNIQUE OPTIONAL�}�WITH SYNTAX�{�		[PARAMETER	&ParameterType]�		[CODE		&errorCode]�}�

Code ::= CHOICE�{�		localValue		INTEGER.�		GlobalValue		OBJECT IDENTIFIER�}

Figure 3/Q.754 (sheet 1 of 11) – Formal syntax of OMASE services

�-- OMASE operators --

eventReport OPERATION ::=�{�PARAMETER eventReportArgument		EventReportArgument

CODE	localValue:0�}

confirmedAction OPERATION ::=�{�PARAMETER actionArgument		ActionArgument

RESULT 	actionResult		ActionResult�ERRORS	{ accessDenied | invalidArgumentValue |�		noSuchAction | noSuchArgument |�		noSuchObjectClass | noSuchObjectInstance |�		processingFailure }

CODE	localValue:7�}

Figure 3/Q.754 (sheet 2 of 11) – Formal syntax of OMASE services

�-- The om-service error definitions are as follows:

noSuchObjectClass		ERROR ::=�	{�	PARAMETER	ObjectClass�	CODE		localValue:0�	}

noSuchObjectInstance	ERROR ::=�	{�	PARAMETER	ObjectInstance�	CODE		localValue:1�	}

accessDenied			ERROR ::=�	{�	CODE		localValue:2�	}

noSuchAction		ERROR ::=�	{�	PARAMETER	NoSuchAction�	CODE		localValue:9�	}

processingFailure		ERROR ::=�	{�	PARAMETER	ProcessingFailure -- optional --�	CODE		localValue:10�	}

noSuchArgument		ERROR ::=�	{�	PARAMETER	NoSuchArgument�	CODE		localValue:14�	}

invalidArgumentValue	ERROR ::=�	{�	PARAMETER	InvalidArgumentValue�	CODE		localValue:15�	}

Figure 3/Q.754 (sheet 3 of 11) – Formal syntax of OMASE services

�-- The following gives the supporting type definitions: --

ActionArgument		::= SEQUENCE	{�					COMPONENTS OF		BaseManagedObjectld,�					accessControl			[5] AccessControl OPTIONAL,�					actionlnfo				[12] IMPLICIT ActionInfo }

Actionlnfo			::= SEQUENCE	{�					actionType		[3] IMPLICIT CNF-ACTION.&operationCode,�					actionlnfoArg	[4] CNF-ACTION. &ActionArgType(@actionType)�								OPTIONAL}

ActionResult			::= SEQUENCE	{�					managedObjectClass		ObjectClass OPTIONAL,�					managedObjectInstance		ObjectInstance OPTIONAL,�					currentTime				[5] IMPLICIT GeneralizedTime OPTIONAL,�					actionReply				[6] IMPLICIT ActionReply OPTIONAL }

ActionTypeld		::= CHOICE		{�					-- globalForm... --�					localForm				[3] IMPLICIT CNF-ACTION }

BaseManagedObjectId	::= SEQUENCE	{�					baseManagedObjectClass		ObjectClass,�					baseManagedObjectlnstance	Objectlnstance }

EventReportArgument	::= SEQUENCE	{�					managedObjectClass		ObjectClass,�					managedObjectlnstance		Objectlnstance,�					eventTime				[5] IMPLICIT GeneralizedTime OPTIONAL,�					eventType				[7] IMPLICIT EVENT. &operationCode�					eventInfo				[8] EVENT. &EventInfo Type (@eventType)�										OPTIONAL}

EventTypeId			::= CHOICE		{�					-- globalForm... --�					localForm				[7] IMPLICIT EVENT }

ActionReply			::= SEQUENCE	{�					actionType				[3] IMPLICIT CNF-ACTION.�										&operationCode,�					actionReplyInfo			[4]�								CNF-ACTION.&ActionResultType(@actionType)�					}

AccessControl		::= EXTERNAL�-- AccessControl syntax is to be compatible with that defined in CMIP coded X.209 --

Figure 3/Q.754 (sheet 4 of 11) – Formal syntax of OMASE services

�InvalidArgumentValue	::= CHOICE {�					actionValue		[0] IMPLICIT ActionInfo,�					eventValue		[1] IMPLICIT SEQUENCE {�					eventType		[7] IMPLICIT EVENT.&operationCode,�					eventlnfo		[8] EVENT.&EventInfoType(@eventType)�									OPTIONAL }}

NoSuchAction		::= SEQUENCE	{ managedObjectClass	ObjectClass,�							actionType				ActionTypeld }

NoSuchArgument		::= CHOICE		{�					actionld						[0] IMPLICIT SEQUENCE {�						managedObjectClass			ObjectClass OPTIONAL,�						actionType					ActionTypeId },�					eventld						[1] IMPLICIT SEQUENCE {�						managedObjectClass			ObjectClass OPTIONAL,�						eventType					EventTypeID }}

ObjectClass			::= CHOICE		{�					globalForm						[0] IMPLICIT OBJECT�												IDENTIFIER,�					-- ... --�					}

Objectlnstance		::= CHOICE		{�					-- ... --�					nonSpecificForm					[3] IMPLICIT OCTET STRING,�					-- ... --�					}

ProcessingFailure		::= SEQUENCE	{�					managedObjectClass				ObjectClass OPTIONAL,�					managedObjectlnstance				Objectlnstance OPTIONAL,�					specificErrorlnfo					[5] IMPLICIT SpecificErrorlnfo }

SpecificError		::= INTEGER	-- defined by object class --

SpecificErrorInfo		::= SEQUENCE	{�					errorType				[0] IMPLICIT SpecificError.&errorCode,�					errorParm				[1] IMPLICIT SPECIFIC-ERROR. &ProcessingError�										ParmType(@errorType) OPTIONAL }

Timer				::= INTEGER	-- seconds –

Figure 3/Q.754 (sheet 5 of 11) – Formal syntax of OMASE services

�-- Specific event reports are categorized by object class. The protocol uses may be described

-- by the EVENT MACRO below. --

	EVENT ::= CLASS

	{�		&EventInfoType		OPTIONAL,

		&operationCode		INTEGER UNIQUE OPTIONAL

	}�	WITH SYNTAX�	{�		[EVENTINFO		&EventInfoType]�		[CODE			&operationCode]�	}

-- Specific Actions are categorized by object class. The protocol uses may be described

-- by the CNF-ACTION INFORMATION OBJECT below. --

	CNF-ACTION ::= CLASS

	{

		&ActionArgType			OPTIONAL,

		&ActionResultType		OPTIONAL,

		&SpecificErrors			SPECIFIC-ERROR OPTIONAL,

		&operationCode			INTEGER UNIQUE OPTIONAL

	}�	WITH SYNTAX�	{�		[ACTIONARG			&ActionArgType]�		[ACTIONRESULT			&ActionResultType]�		[SPECIFICERRORS		&SpecificErrors]�		[CODE				&operationCode]�	}

-- Errors that are action or event specific are defined using the SPECIFIC-ERROR macro below. --

		SPECIFIC-ERROR ::= CLASS

		{

			&ProcessingErrorParmType		OPTIONAL,

			&errorCode					INTEGER UNIQUE OPTIONAL

		}�		WITH SYNTAX�		{�			[PARAMETER		&ProcessingErrorParmType]�			[CODE			&errorCode]�		}

Figure 3/Q.754 (sheet 6 of 11) – Formal syntax of OMASE services

�-- specific OMASE constructs follow --

testRoute CNF-ACTION ::=�	{�		ACTIONARG SEQUENCE{�						initiating SP			[0] IMPLICIT PointCode,�						traceRequested		[1] IMPLICIT BOOLEAN,�						threshold			[2] IMPLICIT INTEGER,�						pointCodesTraversed	[3] IMPLICIT PointCodeList,�						formindicator		[4] IMPLICIT Formindicator OPTIONAL,�-- formIndicator is required in SRVT, but not used in MRVT --

						mtpBackwardRoutingRequested�										[5] IMPLICIT BOOLEAN OPTIONAL,�-- mtpBackwardRoutingRequested is required in SRVT, but not in MRTV --

						testInitiatorGT		[6] IMPLICIT GlobalTitle OPTIONAL,�						destinationPC		[7] IMPLICIT PointCode OPTIONAL,�						destinationSSN		[8] IMPLICIT SubsystemNumber 												OPTIONAL,�						backupDPC			[9] IMPLICIT PointCode OPTIONAL,�						backupSSN			[10] IMPLICIT SubsystemNumber 											OPTIONAL,�						originalGT			[11] IMPLICIT GlobalTitle OPTIONAL,�						inputGT			[16] IMPLICIT GlobalTitle OPTIONAL,�-- parameters with tags 4 through 12 can only be used in SRVT, not MRVT --

						routePriorityList		[12] IMPLICIT RoutePriorityList�												OPTIONAL,�-- routePriorityList can only be used in MRVT, and only if the infoRequest parameter is present. --

						infoRequest			[13] IMPLICIT BIT STRING {�										pointCode(0),�										pointCodeList(1),�										routePriorityList(2),�										…} OPTIONAL,�-- infoRequest is used to indicate that the test initiator node can accept a route TraceNew�-- RVR message, and also asks for particular parameters to be returned in it, if it is sent. This�-- parameter can only be inserted at the initiator node, but it can be copied into regenerated MRVTs. --

						returnUnknownParams	[14] IMPLICIT BIT STRING {�										tag15(0),�										tag16(1),�										…} OPTIONAL,�-- returnUnknownParams is used to indicate which parameters that a node does not understand�-- should be returned in an RVR if one is sent (or in an RVA message in the copyData field�-- if the test initiator is unknown). Bit 0 represents an RVT parameter with tag value 15, bit 1�-- an RVT parameter with tag value 16, etc. To avoid confusion in the copyData field, when�-- defining a new parameter in the RVR message, the tag should have the same value as it has�-- in the RVT message. This parameter can only be present if infoRequest is present. --

						directRouteCheck		[15] IMPLICIT BOOLEAN OPTIONAL,�-- directRouteCheck can only be used in MRVT. --

	… }

SPECIFICERRORS		{ failure | partialSuccess }

CODE				1

}

-- TC timer = T1 for MRVT, = T2 for SRVT, Class = 1--

Figure 3/Q.754 (sheet 7 of 11) – Formal syntax of OMASE services

�PointCode ::= OCTET STRING

PointCodeList ::= SEQUENCE OF PointCode

RoutePriorityList ::= SEQUENCE OF Priority

Priority ::= INTEGER{

				unknown(0),�				firstChoice(1),�				secondChoice(2),�				thirdChoice(3),�				…} (0..255)

FormIndicator ::= INTEGER�		{ compare (0),�		noCompare (1) } (0..1)

GlobalTitle ::= OCTET STRING�		-- the GlobalTitle here consists of the SCCP GTI + GT, the GTI should be encoded exactly as in�		-- 3.4.1/Q.713, and the GT as in 3.4.2.1 to 3.4.2.4/Q.713 as appropriate. --

SubsystemNumber ::= OCTET STRING

failure	SPECIFIC-ERROR ::=�		{�		PARAMETER SEQUENCE		{failureType		[0] IMPLICIT FailureString,�								traceSent		[1] IMPLICIT BOOLEAN,�								copyData		[2] IMPLICIT CopyData OPTIONAL,�		-- copyData might be present if failureType is unknownInitiatingSp, traceSent is FALSE,�		-- and the prompting RVT message contained a requestInfo parameter, or returnUnknownParams�		-- was in the RVT message. --

								… }�		CODE	1�		}

FailureString ::= BIT STRING�			{ detectedLoop(0),�			excessiveLengthRoute(1),�			unknownDestination(2),�			routeInaccessible(3),�			processingFailure(4),�			unknownInitiatingSP(5),�			timerExpired(6),�			sPNotAnSTP(7),�		-- wrongSp is a synonym, used in SRVT, of sPNotAnSTP. --

			incorrectTranslation-Primary (8),�			incorrectTranslation-Secondary (9),�			incorrectTranslation-Intermediate (10),�			notPrimaryDestination (11),�			notSecondaryDestination (12),�			notRecognizedPrimary (13),�			notRecognizedSecondary (14),�			routingProblem (15),�		-- bits 8 through 15 might only be set in SRVT, not MRVT. --

			maxNrMRVTestsAlready(16),�		-- maxNrSRVTestsAlready is a synonym, used in SRVT, of maxNrMRVTestsAlready. --

			indirectRoute(17),�		-- indirectRoute might only be set in MRVT, not SRVT. --

			… }

CopyData ::= OCTET STRING

Figure 3/Q.754 (sheet 8 of 11) – Formal syntax of OMASE services

�partialSuccess	SPECIFIC-ERROR ::=�	{�		PARAMETER SEQUENCE	{failureType		[0] IMPLICIT FailureString,�							traceSent		[1] IMPLICIT BOOLEAN,�							copyData		[4] IMPLICIT CopyData OPTIONAL,

	-- copyData might be present if failureType is unknownInitiatingSP, traceSent is FALSE,�	-- and the prompting RVT message contained a requestInfo parameter,�	-- or returnUnknownParams was in the RVT message. --

							… }�			CODE	2�	}

routeTrace		EVENT ::=�		{�		EVENTINFO CHOICE {�				success			[0] IMPLICIT PointCodeList,�				detectedLoop		[1] IMPLICIT PointCodeList,�				excessiveLengthRoute	[2] IMPLICIT PointCodeList,�				unknownDestination	[3] IMPLICIT NULL,�				routeInaccessible		[4] IMPLICIT PointCode,�				processingFailure		[5] IMPLICIT NULL,�				unknownInitiatingSP	[6] IMPLICIT PointCode,�				timerExpired		[7] IMPLICIT PointCodeList,�				sPNotAnSTP		[8] IMPLICIT PointCodeList,�		-- wrongSP is a synonym, used in SRVT, for sPNotAnSTP. --

		incorrectTranslation-Primary		[9] IMPLICIT PointCodeList,�		incorrectTranslation-Secondary		[10] IMPLICIT PointCodeList,�		incorrectTranslation-Intermediate	[11] IMPLICIT PointCodeList,�		notPrimaryDestination			[12] IMPLICIT PointCodeList,�		notSecondaryDestination			[13] IMPLICIT PointCodeList,�		notRecognizedPrimary			[14] IMPLICIT PointCodeList,�		notRecognizedSecondary			[15] IMPLICIT PointCodeList,�			routingProblem			[16] IMPLICIT PointCodeList�		-- the choices with tags 9 through 16 can only be used in SRVT. --�

				}

		CODE	2�		}�

	-- TC Timer = 0, Class = 4

Figure 3/Q.754 (sheet 9 of 11) – Formal syntax of OMASE services

�routeTraceNew EVENT ::=�	{�		EVENTINFO SEQUENCE {�			result					[0] IMPLICIT ErrorTag,�			pointCode				[1] IMPLICIT PointCode OPTIONAL,�			pointCodeList			[2] IMPLICIT PointCodeList OPTIONAL,�			routePriorityList			[3] IMPLICIT RoutePriorityList OPTIONAL,�			copyData				[4] IMPLICIT CopyData OPTIONAL,

	-- copyData allows any parameters included in an RVA message, when the�	-- test initiator is unknown, to be copied into the RVR, without enhancing it. It also�	-- allows new OPTIONAL RVT parameters not understood by the node generating the�	-- RVR from the RVA message to be returned, when requested by the test initiator.�	-- Note that a new parameter defined in routeTraceNew should, if it is also defined in�	-- testRoute, have the same tag value as in testRoute.�	-- One RVR message should be sent for each error detected (no error diagnostics should be�	-- "or'd" together). --�

								… }�

		CODE	4

�	}�

	-- TC Timer = 0, Class = 4�

Figure 3/Q.754 (sheet 10 of 11) – Formal syntax of OMASE services

ErrorTag ::=INTEGER {�		success(0),�		detectedLoop(1),�		excessiveLengthRoute(2),�		unknownDestination(3),�		routeInaccessible(4)�		processingFailure(5)�		unknownInitiatingS(6),�		timerExpired(7),

	-- wrongSP is a synonym, used in SRVT, of sPNotAnSTP. --

	incorrectTranslation-Primary(9),�	incorrectTranslation-Secondary(10),�	incorrectTranslation-Intermediate(11),�	notPrimaryDestination(12),�	notSecondaryDestination(13),�	notRecognizedPrimary(14),�	notRecognizedSecondary(15),�		routingProblem(16)�	-- values 9 through 16 are applicable only in SRVT, not in MRVT. --

			maxNrMRVTestsAlready(17),�	-- maxNrSRVTestsAlready is a synonym, used in SRVT, of maxNrMRVTestsAlready. --

			indirectRoute(18),�	-- value 18 is applicable only in MRVT, not SRVT. --

				… } (0..255)

END -- OMASE protocol –

Figure 3/Q.754 (sheet 11 of 11) – Formal syntax of OMASE services

�Annex A

Use of primitive interfaces

� EMBED Designer.Drawing.7 ���

Figure A.1/Q.754 – Primitive interfaces

Figure A.2 illustrates the use of the primitives in an MRV Test. The OMASE-User at the origin, on receiving a "sendMRVT" request from the Management Process (MP – see Recommendation Q.753 for the model used), constructs an OM-CONFIRMED-ACTION request. The sequence is then as shown by the primitive and message sequence, up to number 5. At this point, if the node is not the tested destination, the OMASE-User receiving the OM-CONFIRMED-ACTION indication requests OM-CONFIRMED�ACTION of OMASE, to send out MRVT messages on all routes to the tested destination in the routing table. When all MRVA messages are received (seen in the OMASE�User as OM�CONFIRMED-ACTION confirm primitives), the OMASE-User issues the OM�CONFIRMED-ACTION response primitive as at 6.

�� EMBED Designer.Drawing.7 ���

Figure A.2/Q.754 – Example use of primitive interfaces

�

�Field name���������������Bit encoding�Reference/Explanation���Message Type Tag���������������01100010�(Begin (Table 8/Q.773)���Message Length���������������00110010�50 octets following TC part����Transaction ID Tag��������������01001000�(Originating (Table 10/Q.773)����Length��������������00000100�4 octets����Transaction ID Value��������������xxxxxxxx�TCAP based on a dialogue ������������������xxxxxxxx�at the user level������������������xxxxxxxx�������������������xxxxxxxx�����Component Portion Tag��������������01101100�(Table 14/Q.773)����Length��������������00101010�All 42 octets below here�����Component Type Tag�������������10100001�(Invoke (Table 19/Q.773)�����Length�������������00101000�All 40 octets below here������Component ID Tag������������00000010�(Invoke ID (Table 20/Q.773)������Length������������00000001�1 octet������Invoke ID Value������������xxxxxxxx�OMAP PROVIDED������Operation Code Tag������������00000010�(Local (Table 22/Q.773)������Length������������00000001�1 octet������Operation Code������������00000111�(Confirmed Action (Figure 3/Q.754)������Parameter Sequence Tag������������00110000�(Sequence Tag (Table 23/Q.773)������Length������������00100000�All 32 octets below here�������Object Class Tag�����������10000000�globalForm X.711 and X.690�������Length�����������00000101�5 octets�������Value-MTP Routing Tables�����������00000000�ITU-T Rec.������������������00010001�q������������������10000101�85 ((754������������������01110010�72 ((������������������00000000�MTP Routing Tables 1992�������Object Instance Tag�����������10000011�nonSpecificForm X.711 and X.690�������Length�����������00000010�2 octets�������Object Instance Value�����������xxxxxxxx�(OMAP) Tested destination������������������xxxxxxxx��������Action Info Tag�����������10101100�Recs. X.711 and X.690�������Length�����������00010011�All 19 octets below here��������Action Type Tag����������10000011�localForm X.711 and X.690��������Length����������00000001�1 octet��������CNF-ACTION����������00000001�(testRoute (Figure 3/Q.754)��������Action Info Arg Tag����������10100100�Recs. X.711 and X.690��������Length����������00001110�All 14 octets below here���������Parameter Seq. Tag���������00110000�(Sequence Tag (Table 23/Q.773)���������Length���������00001100�All 12 octets below here����������Initiating SP Tag��������10000000�Figure 3/Q.754, Rec. X.690����������Length��������00000010�2 octets����������Initiating SP Value��������xxxxxxxx�(OMAP) test initiator������������������xxxxxxxx�����������Trace Req. Tag��������10000001�Figure 3/Q.754, Rec. X.690����������Length��������00000001�1 octet����������Value��������00000001�(TRUE����������Threshold Tag��������10000010�(threshold (Figure 3/Q.754)����������Length��������00000001�1 octet����������Value of threshold��������xxxxxxxx�OMAP PROVIDED����������Point Code Trav. Tag��������10100011�Figure 3/Q.754����������Length��������00000000�empty Point Code list��Figure A.3/Q.754 – Example of an MRVT message delivered to the SCCP

�

�Field name���������������Bit encoding�Reference/Explanation���Message Type Tag���������������01100100�(END (Table 8/Q.773)���Message Length���������������00001101�13 octets following in TC part����Transaction ID Tag��������������01001001�(Destination (Table 10/Q.773)����Length��������������00000100�4 octets����Transaction ID Value��������������xxxxxxxx�Same as in BEGIN (MRVT msg)������������������xxxxxxxx�������������������xxxxxxxx�������������������xxxxxxxx�����Component Portion Tag��������������01101100�(Table 14/Q.773)����Length��������������00000101�All 5 octets below here�����Component Type Tag�������������10100010�(Ret. Res.(L) (Table 19/Q.773)�����Length�������������00000011�All 3 octets below here������Component ID Tag������������00000010�(Invoke ID (Table 20/Q.773)������Length������������00000001�1 octet������Invoke ID Value������������xxxxxxxx�Same as MRVT message (Correlation)��Figure A.4/Q.754 – Example of an MRVA (success) message delivered to the SCCP

�Field name���������������Bit encoding�Reference/Explanation���Message Type Tag���������������01100100�(END (Table 8/Q.773)���Message Length���������������00100000�32 octets following in TC part����Transaction ID Tag��������������01001001�(Destination (Table 10/Q.773)����Length��������������00000100�4 octets����Transaction ID Value��������������xxxxxxxx�Same as in BEGIN (MRVT msg)������������������xxxxxxxx�������������������xxxxxxxx�������������������xxxxxxxx�����Component Portion Tag��������������01101100�(Table 14/Q.773)����Length��������������00011000�All 24 octets below here�����Component Type Tag�������������10100011�(Ret. Error (Table 19/Q.773)�����Length�������������00010110�All 22 octets below here������Component ID Tag������������00000010�(Invoke ID (Table 20/Q.773)������Length������������00000001�1 octet������Invoke ID Value������������xxxxxxxx�Same as MRVT message (Correlation)������Error Code Tag������������00000010�Table 24/Q.773 (local)������Length������������00000001�1 octet������Processing Failure������������00001010�Figure 3/Q.754������Parameter Sequence Tag������������00110000�(Sequence Tag (Table 23/Q.773)������Length������������00001110�All 14 octets below here�������Specific Error Info Tag�����������10100101�Figure 3/Q.754�������Length�����������00001100�all 12 octets below here��������Error Type Tag����������10000000�Figure 3/Q.754��������Length����������00000001�1 octet��������Failure����������00000001�Figure 3/Q.754��������Error Parameters����������10100001�Figure 3/Q.754��������Length����������00000111�All 7 octets below here����������Failure Type Tag��������10000000�Figure 3/Q.754����������Length��������00000010�2 octets����������Unused Bits��������00000000�no bits����������Failure String��������xxxxxxxx�Depends on type failure ����������Trace Sent Tag��������10000001�Figure 3/Q.754����������Length��������00000001�1 octet����������Trace Sent Value��������0000000x�True (1, False (0, Fig. 3/Q.754��Figure A.5/Q.754 – Example of an MRVA (failure) message delivered to the SCCP

��Field name���������������Bit encoding�Reference/Explanation���Message Type Tag���������������01100010�(BEGIN (Table 8/Q.773)���Message Length���������������00101100�44 octets following TC part����Transaction ID Tag��������������01001000�(Originating (Table 10/Q.773)����Length��������������00000100�4 octets����Transaction ID Value��������������xxxxxxxx�TCAP based on a dialogue at������������������xxxxxxxx�the user level������������������xxxxxxxx�������������������xxxxxxxx�����Component Portion Tag��������������01101100�(Table 14/Q.773)����Length��������������00100100�All 36 octets below here�����Component Type Tag�������������10100001�(Invoke (Table 19/Q.773)�����Length�������������00100010�All 34 octets below here������Component ID Tag������������00000010�(Invoke ID (Table 20/Q.773)������Length������������00000001�1 octet������Invoke ID Value������������xxxxxxxx�OMAP PROVIDED������Operation Code Tag������������00000010�(Local (Table 22/Q.773)������Length������������00000001�1 octet������Operation Code������������00000000�(Event Report (Figure 3/Q.754)������Parameter Sequence Tag������������00110000�(Sequence Tag (Table 23/Q.773)������Length������������00011010�All 26 octets below here�������Object Class Tag�����������10000000�(Figure 3/Q.754)�������Length�����������00000101�5 octets�������Value-MTP Routing Tables�����������00000000�ITU-T Rec.������������������00010001�q������������������10000101�85 ((754������������������01110010�72 ((������������������00000000�MTP Routing Tables 1992�������Object Instance Tag�����������10000011�(Figure 3/Q.754)�������Length�����������00000010�2 octets�������Object Instance Value�����������xxxxxxxx�Terminating PC (OMAP)������������������xxxxxxxx�(Tested Destination(�������Event Type Tag�����������10000111�Figure 3/Q.754�������Length�����������00000001�1 octet�������Event Type�����������00000010�(routeTrace (Figure 3/Q.754)�������Event Info Type Tag�����������10101000�Figure 3/Q.754�������Length�����������00001010�All 10 octets below here��������Success Identifier����������10100000�Figure 3/Q.754��������Length����������00001000�All 8 octets below here����������Point Code Tag��������00000100�(OCTET STRING����������Length��������00000010�2 octets����������Point Code��������xxxxxxxx�������������������xxxxxxxx�����������Point Code Tag��������00000100�(OCTET STRING����������Length��������00000010�2 octets����������Point Code��������xxxxxxxx�������������������xxxxxxxx���Figure A.6/Q.754 – Example of an MRVR (success) message delivered to the SCCP

�

ITU-T RECOMMENDATIONS SERIES��Series A�Organization of the work of the ITU-T��Series B�Means of expression: definitions, symbols, classification��Series C�General telecommunication statistics��Series D�General tariff principles��Series E�Overall network operation, telephone service, service operation and human factors��Series F�Non-telephone telecommunication services��Series G�Transmission systems and media, digital systems and networks��Series H�Audiovisual and multimedia systems��Series I�Integrated services digital network��Series J�Transmission of television, sound programme and other multimedia signals��Series K�Protection against interference��Series L�Construction, installation and protection of cables and other elements of outside plant��Series M�TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits��Series N�Maintenance: international sound programme and television transmission circuits��Series O�Specifications of measuring equipment��Series P�Telephone transmission quality, telephone installations, local line networks��Series Q�Switching and signalling��Series R�Telegraph transmission��Series S�Telegraph services terminal equipment��Series T�Terminals for telematic services��Series U�Telegraph switching��Series V�Data communication over the telephone network��Series X�Data networks and open system communication��Series Z�Programming languages��

�	CMIP is defined in ISO/IEC 9596 and in Recommendation X.711.

�	See Recommendations X.680 through X.683 and Recommendation X.690 for the description of the formal notation (also Recommendations X.208 and X.209).

�	The use of the overall guard timer in the OMASE-User at the test initiator node enables the test to fail gracefully in this circumstance.

� PAGE �44�	Recommendation Q.754 (06/97)

�PAGE �2�

		Recommendation Q.754 (06/97)	� PAGE �43�

Printed in Switzerland

Geneva, 1997

Printed in Switzerland, Geneva - 1996

