10.1	External identification

This identification mechanism is not defined by this Recommendation and is not encoded within an MHEG object.

NOTE – Distinguish clearly between identification and references. The external identification is not encoded in the MHEG object, but the reference to the MHEG object is encoded within an MHEG object, even if it uses an external reference.

This identification mechanism may be used to identify any MHEG object or data not included in a content or a script object.

This technique is defined in ISO 8879 “Formal Public Identifiers”, and ISO/IEC 9070 “Registration procedures for public text owner identifiers” that provides both ASN.1 and SGML notation for the representation of registered owner identifiers. The external identifier consists of:

·	a public identifier (see 10.1.1);

·	a system identifier (see 10.1.2).

10.1.1	Public identifier

A public identifier is a character string whose syntax is given by 10.2/ISO 8879. In this Recommendation, a public identifier is encoded as an ASN.1 PrintableString.

NOTE – The encoding method for public identifiers of this Recommendation simplifies that of ISO/IEC 9070 defined in informative Annex D in order to ease implementation.

The example of a public identifier in Figure 14 identifies the image of Lena, the lady with the hat, as it is stored in the system. The example of a public identifier in Figure 15 identifies a remote object requiring telecommunication access. A complete example of a public identifier is given in Figure 16.

Recommendation T.171 (10/96)

� EMBED Word.Picture.6 ���

FIGURE 14/T.171...[D014] = 5.5 cm

� EMBED Word.Picture.6 ���

FIGURE 15/T.171...[D015] = 6.5 cm

�
� EMBED Word.Picture.6 ���

FIGURE 16/T.171...[D016] = 6 cm

In Figure 16, imagine a Ruritanian hat manufacturer called Hatz who applies to the ISO/IEC 9070 Registration Authority and is issued the registration number – 1. The company follows the recommended conventions and decides to begin the owner-name components with: “/RR:Hatz”.

The Hatz company decides to set up a group of public MHEG objects containing description of the hats. The additional owner-name component is HATS, thus making the full owner name: ISO/IEC 9070/RA::-1::RR::Hatz::HATS.

10.1.2	System identifier

A system identifier provides a system-dependent means of identifying a particular piece of information within the system. It may also be used to indicate the system that supplies the information. The character set and the syntax of the system identifier is not defined by this Recommendation and depends on the system. This Recommendation encodes the system identifier as an ASN.1 OctetString.

NOTE – The system identifier may be used to describe a database or telecommunications request for an object.

Figure 17 shows that identification mechanisms may be combined. This link object has an internal identification encoded internally using an MHEG identifier, and an external identification encoded externally to the object using an external identifier.

� EMBED Word.Picture.6 ���

FIGURE 17/T.171...[D017] = 6 cm

�
10.2	Internal identification

This identification mechanism is encoded within MHEG objects.

The following internal identifications are provided in ISO/IEC 13522�1 to identify an outer entity:

·	MHEG Identifier: Identify any MHEG object (see 17.2);

·	Root Rt Identifier: Identify any root rt-object (see 10.2.2);

·	Channel Identifier: Identify any channel (see 10.2.3).

The internal identification is also used to identify an element within a constructed entity. For that purpose, the following is defined:

·	An index: To provide an identification for an element of a given generation within a constructed entity. Each element is indexed within a generation by sequential integers starting from one. The following notation is used to express index within this Recommendation: outer_object_identification.i, where “i” indicates the index within the outer object, e.g. the third element of container object with MHEG ID 1000 is expressed by 1000.3.

·	A tail: To provide an identification of an element within a hierarchy of constructed entities. A tail is a list of indexes and it designs a path from an outer entity through an element. Each index corresponds to an index of an element within the constructed entity. Successive indexes correspond to nested elements. The last index in the list is the index of the element to be identified. The following notation is used to express tail: outer_object_identification.i1.i2.i3....in, where “i1.i2.i3....in” is a list of indexes indicating the path from the outer object through the element.

The following internal identifications are also provided in ISO/IEC 13522�1 to identify an element:

1)	Composition Element Index: Identify any element of a composite (see 10.2.4);

2)	Container Element Identification: Identify any element of a container (see 10.2.5);

3)	Socket ID: Identify any socket (see 10.2.6);

4)	Stream ID: Identify any stream within a multiplexed content object (see 10.2.7).

10.2.1	MHEG identifier

An MHEG identifier may be assigned to each MHEG object. When used, the MHEG Identifier shall be encoded within the MHEG object and shall be composed of the following:

·	An optional application identifier, which is provided by the application designer. It shall be encoded in this Recommendation as an ASN.1 octet string.

·	An MH number, which uniquely identifies an MHEG object within an application. The mh number shall be encoded as an integer. When the MHEG identifier is present, it is mandatory.

�
A reserved MHEG identifier is provided to identify a null MHEG object: “Null-Mh”.

It is the object designer’s responsibility to ensure that MHEG identifiers are unique among the MHEG objects.

The following notation is used to express MHEG identifiers: a1.a2.a3...an-m, where “a1.a2.a3...an” represents the application identifier and m represents the mh number. When the application identifier is omitted, the MHEG identifiers are expressed using the following notation m.

Example: A content object may have the following MHEG identifier: 129.63.24.2-49, and another composite object may have the following MHEG identifier: 700, which means that this composite has no application identifier.

10.2.2	Root Rt-ID

A root rt identifier is assigned to each root rt-object. This identifier is mandaroty. This identifier is composed of the following:

·	The model object identification, which identifies the model object. Any one of the identifications provided by this Recommendation to identify an MHEG object may be used to identify this model object, e.g. MHEG identifier, Container Element Index, External ID, Alias.

·	An rt number, which is an integer provided by the author.

A reserved root rt identifier is provided to identify a null rt-object: “Null-Root-Rt”.

It is the object designer’s responsibility to ensure that root rt identifiers are unique.

The uniqueness of rt numbers is required at a given instant. An rt number may be reused once this number is again available, i.e. once the rt-object that was using it is deleted. It is not possible to have, at a precise instant, two rt-objects with the same rt number.

The following notation is used to express root rt identifiers: model_object_identification:r, where model_object_identification can be any one of the identification provided by this Recommendation to identify an MHEG object and “r” is the rt number, e.g. the first rt-composite object created from the composite object identified by MHEG identifier: 700 has the following root rt identifier: 700:1. The third rt-content object created from the content object identified by MHEG identifier: 129.63.24.2-49 has the following rt identifier 129.63.24.2-49:3.

10.2.3	Channel identifier

A channel identifier is assigned to each channel. This identifier is mandatory. This identifier is an integer.

A reserved channel identifier is provided to identify the default channel: “Default-Channel”.

It is the object designer’s responsibility to ensure that channel identifiers are unique.

10.2.4	Composition element index

The index facility is used in a composite object to identify each element within the composition.

Each composite object defines one generation. The indexes of elements with non-empty associated models are provided by the author. The missing indexes are automatically provided by the MHEG engine; such elements are considered as elements with an empty associated model.

In Figure 18, the five elements in composite object 700 are identified with indexes 1, 2, 3, 4 and 5. The four elements in composite object 701 are identified with indexes 1, 2, 3 and 4. The single element in composite object 702 is identified by index 1. Comp 701 and Comp 702 that are associated models of Comp 700, and Content 7000 that is an associated model of Comp 702, are referenced rather than included. They are identified by using either their own identifier or the index of the composite elements in which they are associated. Figure 18 does not show the composition behaviour in composite objects.

NOTE – The element index is typically used during the construction of the rt-composite.

�
� EMBED Word.Picture.6 ���

FIGURE 18/T.171...[D018] = 8.5 cm

10.2.5	Container element identification

The index facility is used in a container object to identify each element within the container. When a container object contains a hierarchy of embedded container objects, the tail facility is used to identify the embedded elements in the hierarchy of container objects.

Each container object defines one generation. The indexes of elements are automatically provided by the MHEG engine and are indexed in each generation from one, sequentially.

An element in a container object is always an MHEG object. It is possible that a container element, which is an MHEG object, is already assigned another identifier, e.g. an external identifier or an MHEG identifier. In this case, this element has two different identifications, either as an element of a container or as an MHEG object directly.

NOTE – The index or tail within a container is typically used to obtain rapid access to elements of a container. When a Prepare action is targeted to an MHEG object using its identification within a container, e.g. 1000.3, element 3 of container 1000, the object may be picked out of the container with minimal processing by the MHEG engine. If an MHEG identifier is encoded within this object, this identifier is available to the MHEG engine as soon as the object is prepared. It is recommended but not required, that further actions on this object typically use the MHEG identifier rather than the container indexing.

In Figure 19, the elements defined in the container object are MHEG objects; they are identified by an index or a tail within the container, e.g. index 1 of container 800 or tails 1000.8.1 and 800.1 identifies the link object with MHEG-ID 810. An MHEG identifier and an external identifier may be also provided for each object.

10.2.6	Socket identifier

The index facility is used to identify each element of a given generation of an rt-composite. The tail facility is used in a root rt-composite object to identify each element within the rt-composite.

Each root rt-composite defines a complete hierarchy. In each generation of an rt-composite, the sockets are indexed from one, sequentially and deduced from the composite object model. The tail is used to identify each socket indicating the path from the root rt-composite through the socket.

Figure 20 shows an rt-composite that is a result of a New action applied on an rt-composite made from the model composite object 700 shown in Figure 18. The rt number is 8. This rt-composite is made either directly from the composite object 700 or from the same object considered as element 7 in container 1000.

�
� EMBED Word.Picture.6 ���

FIGURE 19/T.171...[D019] = 10 cm

� EMBED Word.Picture.6 ���

FIGURE 20/T.171...[D020] = 8 cm

The sockets in the first generation are identified by indexes 1, 2, 3, 4 and 5 like the elements in the composite 700 or as tails 700:8.1, 700:8.2, 700:8.3, 700:8.4 and 700:8.5.

NOTE – These objects can also be identified by tails: 1000.7:8.1, 1000.7:8.2, 1000.7:8.3, 1000.7:8.4 and 1000.7:8.5, because 700:8 can be identified by 1000.7:8 . However, see the Note in Container element identification 10.2.5.

�
The three sockets in the second generation below index 2 of first generation are identified with indexes 1, 2, 3 like the elements in the composite 701 or as tails: 700:8.2.1, 700:8.2.2 and 700:8.2.3.

The socket in the second generation below index 4 of first generation is identified with index 1 as is the element in the composite 702 or as tail: 700:8.4.1.

10.2.7	Stream identifier

A stream identifier is used to identify each stream within a multiplexed content object. This identifier is expressed as a tail and designs a path from an outer stream to an inner stream within the multiplexed data.

It is the object designer’s responsibility to ensure that stream identifiers are unique within the same multiplexed data.

10.3	Symbolic identification

This Recommendation provides a means of assigning a symbolic identification that may be used to replace any other internal or external identification. This symbolic identification is called alias.

Alias provides the following characteristics:

·	Addressing entities by another name.

·	Regrouping entities on which the same actions are to be applied at the same time.

·	Multievaluation of objects using a delayed assignment of alias. A complete application may be described by an author using alias. The real assignment of the entity may be done later dynamically.

This is particularly useful for multilingual/internationalisation, multiresolution media format, multiversion of objects and multiencoded media format. For example, an author provides one object for the different languages, and the actions are described by using aliases. Then, Set Alias actions are used to assign the correct language when needed.

An alias is a string that is used as a convenient alternative for an other identification format. An alias is assigned by an author using the Set Alias action.

NOTES

1 – This alias is different from the object name in the MH-object class.

2 – For example, Set Alias(START, “e:\appli\start-up.mhg”). This alias is an alternative identification for the external ID identified as “e:\appli\start-up.mhg”.

3 – For example, Set Alias(OPTION, 700:8.2). This alias is an alternative identification for the socket 2 of root rt�composite number 8 created from composite model 700 (see Figure 20).

A given entity may have several aliases assigned at the same time. A given alias may be assigned to several entities at the same time.

11	Generic reference mechanism

Many MHEG entities, data and streams need to be referenced either from another MHEG object or as a parameter of an action. Targets of action also address the MHEG entities using their reference.

11.1	Generic reference using generic identification

The following references are defined:

1)	External ID Reference: Reference to an MHEG object or a data using its External ID (see 10.1).

2)	MHEG ID Reference: Reference to an MHEG object using its MHEG-ID (see 17.2).

The reference to an MHEG identifier cannot be resolved until the referenced MHEG object is decoded. A using application may provide a mechanism to resolve this reference without decoding the object, e.g. using a table of correspondence between a location of an MHEG object and its MHEG identifier.

�
3)	Root Rt-ID Reference: Used to reference a root rt-object. It is specified as a reference to the model object followed by a reference to an rt-number. The model object is referenced using one of the references defined for an MHEG object. The reference to an rt number is one of the following:

a)	An rt number: Used to reference a root rt-object.

b)	The constant *: Used to reference, at the moment when this reference is solved, all the root rt-objects created from the specified model object.

c)	The constant ?: Used to reference a single dynamically determined rt number (see 11.3).

For example, taking into account the composite object defined in Figures 18 and 19:

i)	700:* represents a reference to all the root rt-composite objects created from this composite object model at the moment of the resolution of this reference;

ii)	700:? represents a reference to a dynamically determined root rt-composite object created from this composite object model.

4)	Channel ID Reference: Reference to a channel using its Channel ID (see 10.2.3).

5)	Tail Reference: This reference cannot be used directly by the author; it is part of the Container Element Reference and of the Socket ID Reference. It is defined as one of the following:

a)	Tail: Used to reference a given element using its tail identification (see 11.1).

b)	Tail complement: Defined as either children or descendants. When used alone, it references the child elements, i.e. one generation or all generations (the descendant elements of the outer entity itself).

c)	Tail followed by a tail complement: The tail complement, in that case, applies to the element referenced using the tail identification. This element shall be itself a constructed entity, i.e. another container object or an rt-composite socket.

6)	Container Element Reference: Reference to an MHEG object using its Container Element. It is specified as a reference to the container object followed by a Tail Reference. The container object is referenced using one of the references defined for an MHEG object. The tail reference allows an author to reference:

a)	a single MHEG object, or an element of the container;

b)	the children of the outer container object;

c)	the children of a container object which is an element of the outer container object;

d)	the descendants of the outer container object;

e)	the descendants of a container object that is an element of the outer container object.

7)	NOTE 1 – In Figure 19, 1000.8.children or 800.children represents a reference to the two elements within this embedded container, i.e. link object 810 and multiplexed content object 820.

8)	NOTE 2 – 1000.descendants represents a reference to all the elements within container 1000 and within the embedded container 800.

9)	NOTE 3 – The reference to a container element cannot be resolved until the referenced container object is decoded. However, if the author has provided an offset information within the descriptor (see 0.5.3.9) for a container element, the MHEG engine may use this offset information to decode only the specified container element without decoding the rest of the container object.

10)	NOTE 4 – If an author has provided additional identification to a container element, e.g. an MHEG identifier, this container element may be also referenced using one of the references defined for an MHEG object.

11)	Socket ID Reference: Used to reference a socket. It is specified as a reference to the root rt-composite followed by a Socket Tail Reference. The root rt-composite is referenced using a Root Rt ID Reference. The socket tail reference allows an author to reference:

a)	a single socket;

b)	the children of the root rt-composite;

�
c)	the children of an rt-composite socket within the root rt-composite;

d)	the descendants of the root rt-composite;

e)	the descendants of an rt-composite socket within the root rt-composite.

12)	Socket Tail Reference: This reference cannot be used directly by the author; it is part of the Socket ID Reference. It is defined as one of the following:

a)	A tail: Used to reference a given socket using its tail identification (see above).

b)	A socket tail complement: It is defined as one of the following:

i)	The constants provided by a tail complement, i.e. children or descendants (see above). Used alone, the tail complement applies to the root rt-composite itself.

ii)	The constant ?child used to reference a single dynamically determined socket within the root rt�composite itself.

iii)	The constant ?descendant used to reference a single dynamically determined socket within the descendant sockets of the root rt-composite itself. When ?child or ?descendant is used, the technique to determine the socket is the same as for ? (see 11.3). The individualisation phase, in that case, is made on each child or descendant socket of the specified root rt-composite.

	The ?child and ?descendant facilities may be used as follows: for example, a root rt-composite describes a menu; each socket is an item. When one of the items is selected, the same behaviour is specified. This behaviour is processed individually each time one of the items is selected. This is described in a single link using the ?descendant or ?child facilities. The number of sockets children or descendants may be changed during the life of the menu; the link always applies.

c)	A tail followed by a socket tail complement: The tail complement, in that case, applies to the socket referenced using the tail identification. This socket shall be an rt-composite socket.

13)	NOTE 5 – In Figure 20, 700:8.children represents a reference to all the child elements of the root rt�composite (indexes 1 to 5, first generation).

14)	NOTE 6 – 700:8.2.children represents a reference to all the child sockets of the rt-composite socket 700:8.2 (indexes 1 to 4, 2nd generation).

15)	NOTE 7 – 700:8.descendants represents a reference to all the descendant sockets of the root rt-composite (all generations).

16)	NOTE 8 – 700:?.1 represents a reference to rt-content socket (FILE) of a dynamically determined root rt�composite created from composite object model 700.

17)	NOTE 9 – 700:?.descendants represents a reference to all descendant sockets of a dynamically determined root rt-composite created from composite object model 700.

18)	NOTE 10 – 700:*.1 represents a reference to the rt-content socket 1 (FILE) of all the root rt-composite objects created from this composite object model at the moment of the resolution of this reference.

19)	NOTE 11 – 700:8.?descendant represents a reference to a single dynamically determined socket between the descendant socket (all generations) of the root rt-composite.

20)	NOTE 12 – 700:8.2?child represents a reference to a single dynamically determined socket between the child socket (open, close, new, index) of the rt-composite socket 700:8.2.

21)	NOTE 13 – 700:?.?child represents a reference to a single dynamically determined socket between the child socket (one generation) of a dynamically determined root rt-composite created from composite object model 700.

22)	Stream ID Reference: Reference to a stream using its Stream ID (see 10.2.7).

23)	Alias Reference: Reference to an MHEG entity or a data or a stream using one of its assigned aliases (see 10.3). The reference to an alias cannot be resolved until the alias has been assigned.

�
11.2	Predefined references

The following predefined reference constants value are also defined:

1)	Null-Data: Reference to a null data.

2)	Null-Mh: Reference to a null MHEG object.

3)	Null-Root-Rt: Reference to a null root rt-object.

4)	Default-Channel: Reference to the default channel.

5)	“This”: Local reference to a composite or a container within itself. A composite or a container object may be referenced using any one of the referencing techniques defined for an MHEG object (e.g. MHEG-ID reference, container element reference, alias reference, external identifier reference) or by using the “this” facility provided for local referencing purposes within the composite or the container object itself. “This” shall be used only within link and action object; it shall not be used either within a container element reference or within a component object reference of a composition element. The following applies:

a)	When the composite or the container object is prepared, “this” takes the value of the composite or the container object identification. When the start-up link, rt start-up and container start-up are activated, the value of “this” is propagated to them.

b)	The propagation of the value of “this” to a link object has the effect of replacing each occurrence of “this” within the link condition by the value of “this”.

c)	When such a link fires, the value of “this” shall be propagated to its link effect. The following applies:

i)	Each occurrence of “this” within the usage value of the macro resolution and within the action object is replaced by the value of “this”. If the action object is a nested action object, any occurrence of “this” within all the embedded action objects is also replaced by the value of “this”.

ii)	If the link is a nested link object, the value of “this” is also propagated to the embedded link objects.

6)	NOTE 1 – “This” has the role of a local variable within the scope of the composite or the container itself.

7)	NOTE 2 – In Figure 18, the availability start-up of the composite object has the following link effect: New this:1, Activate link L1. The link object L1 is defined as follows: TC = this:1.3 becomes selected, LE = Run (this:1.5). When the composite 700 is prepared, the start-up is activated, the root rt-composite number 1 is created and the value this = 700 is propagated to link object L1.

11.3	? reference

? is used in link and action objects to describe an individual behaviour common to all root rt-objects created from a given model object. The advantages of this facility are:

·	the behaviour is described only once and applied to all the root rt-objects created from a same model object;

·	the object designer is able to describe an individual behaviour for each root rt-object without knowing the number of root rt-objects that will be created from the given model object;

·	once activated, the link applies to all root rt-objects already created as well as future created root rt�objects;

·	this facility allows a complete independence between all the root rt-objects created from the same model, i.e. they may be presented independently, the behaviour is an individual behaviour attached to each root rt-object.

The reference “model_object_identification:?” can be used in a link or in an action object wherever an rt-object reference is allowed. However, the following applies:

1)	If the link object is not an embedded link, the reference “model_object_identification:?” shall be used in the source value of at least one trigger condition in order to assign a usage value to ?.

The composite rt-availability start-up link answers this requirement, its link condition is “this:? becomes available”. All embedded links activated from the rt-availability start-up are active for each new created root rt-composite.

�
2)	In an embedded link object, the ? can be used for different model objects, e.g. the following references “model_object_identification1:?”, “model_object_identification2:?” can be used in the same embedded link object.

It is deprecated to use ? with different model object identifications in a non-embedded link object. Because the ? value is resolved when a trigger condition becomes true and only one trigger condition becomes true at a given time. So, in that case only one ? is resolved and all other references are considered as “undefined” references.

The determination of the rt number to be taken into account in the place of each ? is highly dynamic. When a non�embedded link object is activated, the following phases applies:

1)	Each link object containing a trigger condition with a source value encoded as “model_object_identification:?” is to be evaluated in parallel for each root rt-object created from the indicated model_object_identification. For that purpose, all instances of ? with the same model_object_identification within the link condition are replaced by a given instance of a root rt-object rt number in each parallel evaluation.

During the activation of such a link object, the root rt-objects created from the indicated model_object_identification may vary, i.e. additional root rt-objects may be created or some of them may be destroyed.

2)	If a trigger condition becomes true for a given root rt-object and if the link condition is satisfied, its rt number becomes the “? usage value”. Each instance of ? with the same model_object_identification is replaced by the “? usage value” in the following places:

a)	Within the link effect – If the action object defining the link effect is a nested action object, the “? usage value” is also propagated to each instance of the ? with the same model_object_identification within the embedded action objects.

b)	When an embedded link object is activated from this link object, the following applies:

i)	a specific instance of the embedded link object handles this “? usage value”;

ii)	the “? usage value” is propagated to each instance of the ? with the same model_object_identification within this instance of embedded link;

iii)	if this instance of the embedded link object contains some ? not resolved within a trigger condition, the same phases, i.e. 1) and 2) apply;

iv)	if some ? remains unresolved after all phases 1) and 2), the corresponding references are to be considered as “undefined”.

3)	Phase 1 is processed in parallel on all root rt-objects created from the model object. If the link condition of a nested link object becomes true for two root rt-objects in parallel in phase 1, e.g. 700:3 and 700:4, the phase 2 is to be processed for each ? usage value in parallel. That is, if the link effect activates an embedded link, two instances of this embedded link are handled in parallel for both ? usage values of 700:3 and 700:4.

If the link is deactivated, this link cannot be fired for any “? usage value”.

This example takes into account composite object defined in Figure 18:

·	Its start-up may have the following link effect: new 700:3, new 700:9.

·	Its rt-availability start-up link effect is: activate link object L1.

·	Link L1 is an embedded link object, it is defined as follows: TC = 700:?.3 becomes selected, LE = run 700:?.5. This link is used to describe an individual behaviour common to all root rt-composites which may be created from model object 700, i.e. for 700:3, 700:9 but also for any future root rt-composite created from the model 700.

The following applies:

1)	When the rt-availability start-up is activated, i.e. each time a new root rt-composite is created, an instance of L1 handles this new root rt-composite. The rt number of this new made root rt-composite is considered as the “? usage value” and is transmitted to this instance of L1.

�
2)	In fact, there is one instance of link L1 per root rt-composite already created from 700. So we can consider that link L1 is active for all root rt-composite created from 700 and that its trigger is evaluated each time the selection status of the socket 3 of any root rt-composite created from 700 changes.

3)	When the trigger of an instance of link L1 becomes true for a root rt-composite, e.g. 700:2, the link condition becomes true and the value of this root rt-composite rt number is considered as the “? usage value”. This value is transmitted to the link effect of this instance of link L1. So the fifth socket of 700:2 becomes running.

4)	When both 700:2.3 and 700:3.3 are selected in parallel, two instances of the link L1 are satisfied in parallel, their link effect is to be performed in parallel. That is, socket 5 of 700:2 and socket 5 of 700:3 become running in parallel.

Following is another example:

·	Link object L1 is defined as follows: TC = 700:?.3 becomes selected, LE = run (700:?.5), activate (link object L2, link object L3).

·	Link L2 is an embedded link object defined as follows: LC: 900:3.1 becomes selected AND 700:?.2 is running, LE: stop 700:?.5 run 700:?.2.

·	Link L3 is a more complex embedded link object, it is defined as follows: LC: 999:?.1 becomes selected AND (700:?.5) is running, LE: stop (999:?.1, 700:?.5) run (999:?.2, 700:?.2).

The following applies:

1)	Instances of Link L1 are handled as explained in the previous example.

2)	Consider now that an instance of L1 link condition is satisfied for 700:7, 7 becomes the “? usage value” for composite 700. This value is transmitted to the link effect of this instance of L1. That is, the socket 5 of 700:7 becomes running as in the previous example, but additionally links L2 and L3 are activated.

3)	When L2 is activated, an instance of L2 handles the “? usage value” and all appearances of 700:? are replaced by 700:7 in the link effect of this instance. When this instance of link L2 is handled and when its link condition becomes true, i.e. 900:3.1 is selected and 700:7.2 is running, then 700:7.5 is stopped and 700:7.2 becomes running.

4)	When L3 is activated, and instance of L3 handles the “? usage value” and all appearances of 700:? are replaced by 700:7 in the link effect of this instance. As one ? is remaining in a trigger condition, the instance of link L3 is evaluated in parallel for all root rt-composites created from 999. If the trigger condition of this instance of L3 is valid for 999.9, the “? usage value” 9 is replaced in this instance and so 999:9.1 and 700:7.5 are stopped and 999:7.2 and 700:7.2 becomes running.

12	Generic Value

This clause describes the mechanisms provided by this Recommendation for specifying values in a generic way. The generic values are typically used to express:

·	elementary action parameters;

·	get action parameters;

·	conditions;

·	MHEG object attributes.

A generic value may be defined as follows:

1)	constant: A specific constant is also provided to identify an unspecified value: “unspecified”.

The “unspecified” value is used in link condition as a comparison value.

2)	evaluated values: An evaluated value is the result of the process of a get action by the MHEG engine. When the MHEG engine is not able to process a get action, this get action is evaluated as the constant value “undefined”.

The generic values may be stored in and retrieved from the data field of a content object.

�
The type of a generic value is one of the following:

·	Generic boolean (see 12.1);

·	Generic numeric (see 12.2);

·	Generic integer (see 12.3);

·	Generic ratio (see 12.4);

·	Generic string (see 12.5);

·	Generic reference (see 12.6);

·	Generic list (see 12.7).

It is the object designer’s responsibility to ensure that the generic values given as parameters of actions conform in type and number to the specification of the parameters as specified in this Recommendation. If the actual parameters do not conform in type or number to what is expected, it is an error and the action shall be ignored.

The type of a generic value determines the following:

·	the set of values that it can possibly take;

·	common semantics of these values.

12.1	Generic boolean

A generic boolean value has one of the following values: TRUE, FALSE.

The generic boolean value may be specified as follows:

·	a boolean constant;

·	a result of the evaluation of a get action;

·	a result of a logical operation within a link condition;

·	a result of a comparison operation within a link condition.

12.2	Generic numeric

A generic numeric value is a numeric. The design of this Recommendation does not limit the numerical values in any way. The values may be integers, reals or complex; however, the coded representations may impose limitations. The ASN.1 syntax defined in this Recommendation supports only integer values.

NOTE – It is recommended that authors assume this limitation.

The generic numeric value may be specified as follows:

·	a numeric constant;

·	a result of the evaluation of a get action.

12.3	Generic integer

A generic integer value shall be an integer.

The generic integer value may be used as follows:

·	an integer constant;

·	a result of the evaluation of a get action.

12.4	Generic ratio

A generic ratio value is a pair of integers (m, n) with m being the enumerator and n the denominator of a fraction. If n is omitted, it is assumed to be 100, interpreting m as a percentage. n shall be greater than 1.

A generic ratio value may be used as follows:

·	a ratio constant;

·	a result of the evaluation of a get action.

�
12.5	Generic string

A generic string value is a string of any number of characters. The design of this Recommendation does not limit the coding scheme of string values in any way. The values may be represented in any code sets. However, the coded representations may impose limitations. The ASN.1 syntax defined in this Recommendationsupports only GraphicString.

NOTE 1 – It is recommended that the authors assume this limitation.

GraphicString contains all G sets + SPACE as defined in ASN.1. Such specification allows for international string.

The string is considered as a whole, i.e. the component characters cannot be addressed individually.

NOTE 2 – Typically, the character string is used as a label, e.g. “Help”.

The generic string value may be specified as follows:

·	a string constant;

·	a result of the evaluation of a get action.

There is a difference between the lowercase and uppercase character.

12.6	Generic reference

A generic reference is one of the references defined by this Recommendation (see Generic reference mechanism).

A generic reference value may be specified as follows:

·	a reference constant;

·	a result of the evaluation of a get action.

12.7	Generic list

A generic list value is an ordered set, possibly empty, of generic values of any type. Each element of a generic list value may have a distinct type from the other elements of the list. Each element of a generic list is implicitly indexed.

NOTES

1 – An element of a list may be another generic list.

2 – Each element, within a list or a sublist, may be retrieved separately using the Get Data action facility.

3 – The generic list type may be used to construct vectors (same type for all elements of the list) and compound sets (sets of elements of various types).

A generic list value may be specified as follows:

·	a list of constants;

·	a result of the evaluation of a get action.

13	Macro Mechanism

The macro mechanism provides a general technique for producing efficient coding of frequently used action and link objects in which only a few values are changed from one to another. This allows the sharing and reuse of complex behaviours. An author may create a catalogue of predefined action and link object templates, that are also called macro action object (see 18.4) and macro link object (see 19.5). In a macro action object or a macro link object, at least one attribute is encoded as a macro parameter value.

A macro parameter value is composed of:

·	A Macro Def ID: It is either a string or an integer. It is used as a symbol representing the macro parameter. A given Macro Def ID may be used by many macro parameter values.

·	A Default usage value: It is a value to be assigned to the attribute encoded as a macro parameter value when the macro usage value assignment is omitted.

�
Each link object contains an optional set of attributes called “macro parameter resolution” and which is used to resolve the macro parameter value contained in its link effect. Each macro parameter resolution is composed of a Macro Def ID and the corresponding macro usage value to be assigned to the Macro Def ID.

When a link object is fired, the link effect is to be processed. The first step of this process is called the macro resolution phase and is limited to this link effect process.

NOTE 1 – As the same link may be fired several times in parallel, therefore, the macro resolution phase is limited to a given link effect process.

The aim of this phase is to assign a macro usage value to each macro parameter value contained in the link effect. Each macro parameter resolution is propagated to the action object describing the link effect. The following applies:

·	if this action is a nested action object, the macro parameter resolution is also propagated to the embedded action object;

·	if an embedded link object is activated from this link effect, the macro parameter resolution is propagated to this embedded link object except if this embedded link object itself contains a macro parameter resolution which uses the same Macro Def ID.

During the propagation phase, for each macro parameter value, the following applies:

·	The Macro Def ID of the macro parameter value is retrieved from one of the propagated macro parameter resolution: This macro parameter value is replaced by the corresponding macro usage value of this propagated macro parameter resolution.

·	NOTE 2 – Even if the usage value is not compatible with the expected type of the attribute encoded as macro parameter value, the MHEG engine is required to assign it. It is for the object designer to ensure the compatibility.

·	NOTE 3 – If the usage value is an evaluated value, the macro parameter value is replaced by this Get action without processing it.

·	Otherwise, this macro parameter value is replaced by the corresponding default usage value encoded within this macro parameter value. If no default usage value is provided, this macro parameter value is replaced by the value “undefined”.

These abbreviations are used for the following examples:

·	MPR	Macro Parameter Resolution

·	MD I	Macro Def ID

·	MUV	Macro Usage Value

·	DUV	Default Usage Value (when DUV is omitted, no default usage value is provided).

·	ALE 	Action in Link Effect

Example 1 – 	Simple link effect.

L1 has following specifications:

·	LC1: Button1 becomes selected.

·	MPR1: (MDI = TARGET1, MUV = 700:1), (MDI = TARGET2, MUV = 700:2).

·	ALE1: New(MDI = TARGET1), New(MDI = TARGET2), Run(MDI = TARGET1), Run(MDI = TARGET2).

If LC1 is satisfied, the macro resolution phase is processed and ALE1 is processed as follows:

·	ALE1: New(700:1), New(700:2), Run(700:1), Run(700:2).

Example 2 – Embedded action within link effect.

L2 has following specifications:

·	LC2: Button1 becomes selected.

·	MPR2: (MDI = SYNC, MUV = serial), (MDI = TARGET1, MUV = 700:1), (MDI = TARGET2, MUV = 700:2).

·	ALE2:	ActionObject1.

�
And ActionObject1 is as follows:

·	Synchro indicator: SYNC.

·	Action set: New(TARGET1), Run(TARGET1), Stop(TARGET2).

If LC2 is satisfied, the macro resolution phase is processed and each MUV is propagated to ActionObject1, and ActionObject1 is processed as follows:

·	Synchro indicator: Serial.

·	Action set: New(700:1), Run(700:1), Stop(700:2).

If synchro indicator is resolved as “undefined”, the action is not processed.

Example 3 – Embedded links within link effect.

L3 has following specifications:

·	LC3:	Button1 becomes selected..

·	MPR3: (MDI = TARGET1, MUV = 700:1).

·	ALE3: New(TARGET1), Activate(L10), Activate(L20).

L10 is as follows:

·	LC10: If TARGET1 is “not running”.

·	MPR10: None.

·	LE10: Run(TARGET1).

And L20 is as follows:

·	LC20: If TARGET1 is “not running”.

·	MPR20: (MDI = TARGET1, MUV = 999:1).

·	ALE20: New(TARGET1), Run(TARGET1).

If LC3 is satisfied, MPR3 is propagated to ALE3, L10 and L20. And L10 is processed as follows:

·	LC10: If 700:1 is “not running”.

·	LE10: Run(700:1).

However, L20 is processed as follows:

·	LC20: If 700:1 is “not running”.

·	ALE20: New(999:1), Run(999:1).

14	Hooks

This clause describes the support for the handling of hooks, which are used in content, script and descriptor objects. Hooks provide the information for the type identification of the encoded data. A hook consists of the encoding information that identifies the encoding method and an optional encoding description that may be used for specifying parameters of the encoding method.

Two kinds of hooks are provided, one for the content data and another for the script data:

1)	Content hook: Composed of an identification field for the data encoding standard and a descriptive field:

a)	The content encoding information contains an identification of the content encoding standard. A wide range of existing encoding standards such as MPEG, G711 or JPEG are maintained in the registered catalogue via the procedure described in ISO/IEC 13522�4. Private encoding formats can also be provided using a proprietary catalogue.

b)	The content encoding description gives a more precise description of the characteristics needed to decode the content. The semantics of these parameters are not defined by MHEG but are given by the semantics of the data encoding Standard or Recommendation with respect to the using application. Such information may also be provided within the content encoding catalogues.

�
2)	Script hook: Composed of an identification field for scripting language and a descriptive field:

a)	Scripting encoding information contains an identification of the script encoding standard. A wide range of existing encoding standards such as C, C++ or Lisp are maintained in the registered catalogue via the procedure described in ISO/IEC 13522�4. Private encoding formats can also be provided using a proprietary catalogue.

b)	Scripting language description gives a more precise description of the characteristics needed to decode the script. The semantics of these parameters are not defined by MHEG but are given by the semantics of the data encoding Standard or Recommendation with respect to the using application. Such information may also be provided within the script encoding catalogues.

15	Extensibility

Following extensibility is provided by this Recommendation:

1)	Catalogues (see 15.1);

2)	Addition of new MHEG object classes (see 15.2);

3)	Extensibility Provision (see 15.3).

15.1	Catalogues

ISO/IEC 13522-1 provides a set of catalogues to maintain compatibility between MHEG engines and to allow extensibility. New concepts can be made available to all MHEG systems if you register a reference to a format identifier in a registered catalogue or only to one group of applications if you register it in a proprietary catalogue:

1)	The registered catalogues are maintained in accordance with ISO/IEC 13522�4. Standardised, well-known concepts are listed in the registered catalogue. It is possible to register upcoming concepts in this catalogue.

2)	Application-specific concepts reside in the proprietary catalogue, which is private to only one set of applications. These catalogues can only be referenced by special MHEG engines. The maintenance of the proprietary catalogue is assured by the using application.

Within each catalogue, an optional description may be associated with each entry to clarify the usage of it.

An MHEG engine can take any catalogue entry into account, thereby, introducing the concept of this entry within its process. When an author provides an MHEG object or an action using such an entry, this MHEG engine will be able to process this object or this action. If the author uses an entry not taken into account by the MHEG engine, the MHEG object or the action will be ignored by this engine.

For each of the following attributes used by this Recommendation, a registered catalogue is provided, and a using application may also maintain a proprietary catalogue for private use:

·	Content encoding contains a precise description of the content encoding methods that may be used in the content hook, e.g. ISO/IEC 11172-2 (MPEG2 video). A content encoding description may be associated with each entry of this catalogue.

·	Content classification is provided as an optional assistance in determining the type of content data. It provides information on the type of data. For media data it is used to indicate the perception media, e.g. text, graphics, audio. This information may be used in a negotiation process, a database, or by an MHEG engine to choose a decoder.

·	Script encoding contains the script languages that may be used in the script hook, e.g. C++, Smalltalk, SMSL. A script encoding description may be associated with each entry of this catalogue.

·	Script classification is provided as an optional assistance in determining the type of script language. This information may be used in a negotiation process, a database, or by an MHEG engine to choose a script decoder.

·	Media type contains the medium type that may be used in the descriptor object in order to help the mapping of a channel to a physical device, e.g. text, still image or video.

�
·	Style contains the styles that may be used in the set style action, e.g. for user interaction: button, slider, entry field. The styles may depend on the GUI on the platform and on user personalisation by the user. Additional information may be associated with each entry of this catalogue in order to define the style more precisely, e.g. a value range for a slider, an orientation for a menu.

·	Event contains a list of catalogued event identifiers (e.g. mouse click, keyboard key pressed, remote control command) that may be used in the descriptor object to indicate the expected mapping of event identifiers provided by the author to the catalogued event identifiers. Additional information may be associated with each entry of this catalogue in order to define the event more precisely, e.g. the position of the click.

·	Extended elementary action contains a list of catalogued elementary actions used in the “catalogued elementary action” action. These catalogued elementary actions are used to extend the number of elementary actions defined by this Recommendation, e.g. draw a line, arithmetic operation. Additional information may be associated with each entry of this catalogue in order to define the behaviour of an action more precisely, e.g. the parameters, the MHEG effect, the allowed periods, additional error conditions.

·	Extended attribute contains a list of catalogued attributes used in the set catalogued attribute action. These catalogued attributes are used to extend the number of attributes of MHEG entities defined in this Recommendation, e.g. colour, text fonts. Additional information may be associated with each entry of this catalogue in order to define the attribute more precisely, e.g. the type.

15.2	Addition of New MHEG object classes

This Recommendation reserves numbers 0 to 9999 of ASN.1 OBJECT IDENTIFIER arc3. The numbers from 0 to 9999 shall not be used privately. However, a using application may use other numbers to create new object classes, that may be complete new object classes or modifications of certain existing object classes.

15.3	Extensibility Provision

In order to enable future extension of attributes, “Extensibility Provision” encoded as “…” in ASN.1 is provided. “Extensibility Provision” is added to the following places in ASN.1:

·	“elementary action” attribute;

·	“evaluated value” attribute;

·	“description” attribute of MH-object class;

·	each leaf class of MHEG object.

And for each “Extensibility Provision” attribute, a list of tags numbered from 0 to 9999 is reserved in order to be used in other Recommendations of the T.170 series. Reserved tags shall not be used privately.

SECTION 3 – OVERVIEW OF MHEG CLASSES

The following clauses present the structure provided by MHEG to interchange multimedia and hypermedia information. The MHEG engine parses this structure.

16	MHEG object classes overview

The object-oriented approach was chosen for the design of the standard because it fits the requirements of active, autonomous and reusable objects. The interchanged object classes have been classified as shown in Figure 21. Each interchanged object belongs to one of the emphasised classes. Abstract classes have been added to describe common attributes or to group classes dealing with similar topics. MHEG does not define methods on its classes. Thus, use of the object-oriented paradigm is limited to attribute inheritance.

�
In Figure 21, the greater-than sign (>) means “has the following subclasses”. Only the instances of classes that have been emphasised may be interchanged. The useful definitions are not considered to be a separate class. They are merely a convenient grouping of utility attributes.

����	MH-OBJECT >�		ACTION�		LINK�		MODEL>�			SCRIPT�			COMPONENT�				CONTENT>�					MULTIPLEXED CONTENT�				COMPOSITE�		CONTAINER�		DESCRIPTOR

Figure 21/T.171 – MHEG inheritance tree

17	Structure of MH-Object Class

This clause describes the common structure provided for interchanging all the instances of MHEG classes, the MHEG objects, defined by this Recommendation. This mechanism provides a consistent approach to the identification and interchange of MHEG objects.

The MH-Object class provides the following information for the identification of MHEG objects.

17.1	Class identification

The class identification is composed of the identification of the standard, the standard version and a specific identifier unique for each MHEG object class. The class identification attribute is encoded at level C using the ASN.1 technique of OBJECT IDENTIFIER (see 8.2.3.1). For the ease of encoding, this attribute is not encoded within MH-object class at level C. This attribute is encoded individually for each interchanged class in order to assign a unique number for each class instead of inherited directly from MH-object class.

17.2	MHEG-ID

An MHEG-ID may be provided to uniquely identify an interchanged object within the scope of an application.

17.3	General object information

MH-object class also gives supplementary information for an MHEG object as follows:

1)	Name of the MHEG object.

2)	Owner of the MHEG object.

3)	Version of the MHEG object.

4)	Last modification date of the MHEG object.

5)	List of keywords qualifying the MHEG object.

6)	Readable copyright information relative to the MHEG object.

7)	Copyright identifier used by certain authorised organisation to identify the copyright work type of the MHEG object. For example:

a)	ISBN (International Standard Book Number) for book;

b)	ISSN (International Standard Serial Number) for periodical publications;

c)	ISRC (International Standard Record Code) for sound recording;

d)	ISAN (International Standard for Audiovisual Number) for audiovisual application.

�
8)	Copyright number used by certain authorised organisation to uniquely identify the copyright information assigned to the MHEG object within a copyright identifier scope, e.g. 2-11072557-5 is an ISBN copyright number.

9)	Readable licence information relative to the usage of the MHEG object.

10)	Cache priority, which may be used by the MHEG engine as a hint of how to manage the MHEG objects. This is an integer in the range from 0 to 255. The value 0 means that the MHEG engine should delete the object from its memory space entirely if it receives a Destroy action. The value 255 means that the MHEG engine is strongly encouraged to cache the MHEG object within its memory space at the time of a Destroy action. Other values may be interpreted by each MHEG engine independently taking into account the range. However, the MHEG engine is not obliged to follow this instruction. This is only provided as a hint information for the MHEG engine.

11)	Readable comments relative to the MHEG object.

12)	Extensibility provision used by other standards which describes an extension of this Recommendation.

18	Structure of Action Class

The action class defines a reusable arrangement of elementary actions. Action objects that are instances of the action class are used in link objects in order to describe their link effects. A given action object may be addressed by many link objects. Several link conditions in different links may be satisfied at the same instant and are assumed to be fired and processed in parallel. Therefore, the processing of actions describing the link effect has a local effect limited to the link itself.

The MHEG action class consists of following information:

1)	A synchro indicator specifies the type of processing of the synchronised actions. Two values are defined: “parallel” and “serial”. When it is set to “serial”, all the actions within the “synchronised action set” are processed in serial. When it is set to parallel, all these actions are processed in parallel (see 31.3). Since synchronised actions may be processed in parallel, it is the author’s responsibility to take into account any side effects due to the parallelism. Specification of contradictory actions is deprecated.

		NOTES

		1 – An action object that calls for a parallel Run and stop of an rt-content is ambiguous since the final state is not defined.

		2 – An action object that calls in the same serial group for an rt-content to run and stop after a delay of one second is not ambiguous. The rt-content is to be presented for one second.

		3 – An MHEG engine is not required to perform true parallel processing, but authors must organise the group as if they were to be processed in parallel.

2)	A synchronised action set is a set of elementary actions and/or other embedded action objects.

Using this structure, an author is able to describe the following action objects:

·	Basic action object (see 18.2);

·	Nested action object (see 18.3);

·	Macro action object (see 18.4).

18.1	Elementary actions

This Recommendation defines a list of elementary actions that may be included in an action object to modify the behaviour of MHEG entities (see Section 4, “MHEG entities common behaviour”), e.g. Prepare, Run. The structure of each elementary action is as follows:

1)	A target set is defined as a list of generic references or only one generic reference. Each elementary action is to be processed on the specified target set. If more than one target is specified in the target set, whatever the value of the synchro indicator is, the elementary action is processed in parallel on all the targets specified in the target set. Authors should assume that the MHEG engine applies the elementary action to the multiple targets in parallel.

A common target set can be specified for several elementary actions by using the alias mechanism (see 10.3) or macro parameter mechanism (see clause 13).

�
2)	An optional transition duration may be provided for some elementary actions. A transition duration is expressed in GTU. When a transition duration is specified, the corresponding elementary action is to be processed during this transition duration. When no transition duration is specified, a null duration is taken into account.

3)	The specific action parameters are defined for each elementary action (see Sections 4, 5, 6, 7 and 8).

18.2	Basic action object

A basic action object contains only elementary actions. It does not contain macro parameters or embedded action objects within its synchronised action set.

NOTE – The using application is responsible for determining the appropriate number of elementary actions.

In Figure 22, the MHEG engine completes the parallel processing of the MHEG effect of elementary action 1 on targets T1, T2 and T3. When completed, the MHEG effect of elementary action 2 is processed on T4.

� EMBED Word.Picture.6 ���

FIGURE 22/T.171...[D021] = 5 cm

18.3	Nested action object

In order to describe more complex behaviour, an embedded action object may be contained in the synchronised action set. The embedded action object can be itself a nested action object. A complete hierarchy of action objects can be designed using this mechanism.

NOTE – The using application is responsible for determining the appropriate depth of nesting.

In the example of Figure 23, the MHEG engine processes the MHEG effect of elementary action 1 on target T. When completed, the MHEG engine processes, in parallel, the MHEG effect of elementary action A on target S and the MHEG effect of elementary action B on target R. When completed, the MHEG effect of elementary action 2 is processed on target R.

18.4	Macro action object

In order to produce efficient coding of frequently used action objects in which only a few values change from one link to another, the synchro indicator attribute of an action object and each parameter of an elementary action may be specified as a macro parameter value. A macro action object contains at least one macro parameter value. Each macro parameter value is resolved when the link object which uses this action is fired (see 19.3 for more details).

19	Structure of Link Class

An MHEG link class is defined for specifying spatial, temporal and conditional relations between, and actions upon, MHEG entities. The link contains a condition, which when satisfied evaluates to true or provokes the processing of actions on targets that produce the required effect. The link is said to be fired.

�
� EMBED Word.Picture.6 ���

FIGURE 23/T.171...[D022] = 8 cm

Only those link objects that have been activated can be firable (see 29.2). Several link conditions in different links may be satisfied at the same instant and are assumed to be fired and processed in parallel by the MHEG engine.

The link object is separated from the objects that produce the triggering contexts. The basic behaviour of each MHEG entity (e.g. volume, channel on/off) is part of the entity itself. During the life of the entities, change in the behaviour can be used to trigger a separate link object that calls for the actions to be processed. These actions, in turn, modify the basic behaviour of any other MHEG entity, for example, to increase a volume. This may in turn generate further changes in behaviour and trigger further links.

Each instance of a link class contains a link condition and a link effect.

Using this structure, an author is able to describe the following types of link objects:

·	Basic link object (see 19.3);

·	Nested link object (see 19.4);

·	Macro link object (see 19.5).

19.1	Link condition

The link condition is defined as either a trigger condition (see 19.1.1) or a logical combination of trigger and constraint conditions (see 0).

The link condition is evaluated as follows:

1)	When a link object becomes active, the link condition is evaluated to false.

2)	If the link condition is a single trigger condition, the link condition evaluates the value of the trigger condition. If the link condition is a logical combination of conditions, the link condition evaluates the value of the top node of the logical tree combining the conditions (see Figure 25).

3)	If the link condition is evaluated to true, the link is fired, i.e. its link effect is processed by the MHEG engine (see 31.2). If the link condition is evaluated to false or “undefined”, the link is not fired, i.e. its link effect is not processed.

A link may be fired several times during its activation, each time its link condition becomes true.

�
� EMBED Word.Picture.6 ���

FIGURE 24/T.171...[D023] = 10 cm

� EMBED Word.Picture.6 ���

FIGURE 25/T.171...[D024] = 13 cm

�
19.1.1	Trigger condition

A trigger condition describes the occurrence of a change in MHEG entities’ behaviour triggering the link. The trigger is described as a change of attribute or status value of an MHEG entity. The following behaviour changes are triggerable:

1)	Temporal changes: Provoked by timestones or delay.

2)	Action changes: Consequences of any elementary action.

3)	Interaction changes: Occur, for example, when the user selects a menu or clicks on a button.

4)	Any catalogued event changes: Occur, for example, when a system event happens.

The trigger condition is expressed as a transition, i.e. as a double condition on the same source. It is composed of the following:

·	a source value;

·	a previous condition, which expresses the condition to be satisfied before the transition occurs;

·	a current condition, which expresses the expected condition to satisfy after the transition occurs.

A trigger condition evaluates a boolean value or “undefined”. The following applies:

1)	When a link object becomes active, each trigger condition is evaluated to false.

2)	Evaluates the previous condition of each trigger condition.

3)	The source value of each trigger condition is an evaluated value on a target attribute or a status, e.g. get preparation status (target). When the value of this attribute or status changes, the following steps are applied for the corresponding trigger condition:

a)	assigns this value to the current comparison value and evaluates the current condition;

b)	evaluates the trigger condition by processing the following logical operation: “previous condition” AND “current condition”:

i)	if the result is true and if the link condition is defined as a single trigger condition, the link condition is evaluated to true;

ii)	if the result is true and if this trigger condition is part of a logical combination of conditions, this logical combination of conditions is to be evaluated (see 19.1.8).

c)	Evaluates the trigger condition to false.

d)	Go to 2.

NOTE – Steps 3) a) and 3) d) should be considered as an atomic operation for link, i.e. if a value tested by a trigger condition changes when the MHEG engine is processing steps 3) a) to 3) d), the processing of such a change is delayed until the current processing enters in step 3.

Table 1 shows some examples of trigger conditions. In the example, Get CV (rt-content N) means Get CV action targeted to the rt-content N in order to retrieve the current audible volume (CV), Get Event (rt-content N) means Get Event action targeted to the rt-content N in order to retrieve the number of most recently happened event, and Get Data (content A) means Get Data action targeted to the content object A in order to retrieve the contained generic value contained.

�
Table 1/T.171 — Examples of trigger conditions

Trigger source�
Previous condition�
�
Current condition�
�
�
�
�
value�
Operator�
Previous value�
Operator�
Current value�
Semantics�
Nature of the Change�
�
Get CV �(rt-content N)�
= =�
10�
<�
5�
rt-content N had CV equal to 10, and decreases to less than five.�
Change from a specified previous value to a specified current value.�
�
Get CV �(rt-content N)�
= =�
Get Data�(content A)�
<�
Get Data�(content B)�
rt-content N had CV equal to �the value specified in the data of content object A, and changes �to a value less than that of the value in content object B.�
�
�
Get CV �(rt-content N)�
Any�
“unspeci�fied”�
Any�
“unspeci�fied”�
The CV of rt-content N has changed. The value is not significant.�
Change from an "unspeci�fied" value to an "unspeci�fied" value. The trigger is �on a change of the source value without regard for its previous and current values.�
�
Get CV �(rt-content N)�
= =�
10�
Any�
“unspeci�fied”�
The CV of rt-content N was 10 and has changed. The new value is not significant.�
Change from a specified value to an "unspecified" value. The trigger is on a change of the source value without regard for its current value.�
�
Get CV �(rt-content N)�
Any�
“unspeci�fied”�
>�
10�
The CV of rt-content N becomes greater than 10. The previous value is not significant. Note that the previous value may have been greater than 10.�
Change from any previous value to a specified current value range.�
�
Get CV �(rt-content N)�
Any�
“unspeci�fied”�
= =�
10�
The CV of rt-content N becomes equal to 10. The previous value is not significant. Note that the previous value may have been equal to 10.�
Change from an "unspeci�fied" value to a specified current value. The trigger is on a change of the source value whatever its previous value.�
�
Get CV �(rt-content N)�
<�
Get CV (rt-content P)�
>�
Get CV (rt-content P)�
The CV of rt-content N was less than the CV of rt-content P and has become greater.�
Change with respect to other rt-contents.�
�
Get Event �(rt-content N)�
Any�
“unspeci�fied”�
= =�
10�
The event 10 has occurred on �rt-content N. The previous event value is not significant.�
Becomes true any rising of the event 10.�
�
Get Event �(rt-content N)�
= =�
10�
= =�
10�
The previous event occurred to rt-content N was 10. The same event occurs again.�
Becomes true for each suc�cessive rising of the event 10.�
�
Get CV �(rt-content N)�
Previous condition is omitted, i.e. it is the negation of the current condition�
�
>=�
5�
The CV of rt-content N was �less than 5 and increases greater than or equal to 5. The previous condition is interpreted as CV<5. The previous value �range is (– �SYMBOL 165 \f "Symbol"�, 4), the current value range is (5, + �SYMBOL 165 \f "Symbol"�). These two value ranges do not overlap and their union is the whole range of integer numbers.�
Change from a previous value range to a current value range where the two value ranges do not overlap and where the union of the value ranges is the largest possible value range. In that case, the previous condition is omitted, and so interpreted as the negation of the current condition.�
�

�
19.1.2	Constraint condition

A constraint condition may be provided within a logical combination of conditions. It expresses a required contextual state at the moment when one of the trigger conditions is satisfied. A constraint condition makes it possible to specify more precisely the context in which the link condition will be satisfied.

A constraint condition is composed of a source value and a current condition which expresses the expected condition to satisfy.

NOTE – Constraints do not require a previous condition because they express contextual states at the moment when the trigger is satisfied.

A constraint condition evaluates a boolean value or “undefined”. It is satisfied when the specified current condition is satisfied for the source value. The constraint conditions are to be evaluated at the instant when one of the trigger conditions becomes true.

Table 2 shows some examples of constraint conditions.

Table 2/T.171 – Examples of constraint conditions

Source Value�
Current condition�
�
Semantics�
�
�
Operator�
Current Value�
�
�
Get CV (rt-content N)�
<�
5�
rt-content N has CV value less than five.�
�
Get CV (rt-content N)�
<�
Get Data �(content A)�
rt-content N has CV value less than that of the value in content object A.�
�
Get CV (rt-content N)�
= =�
5�
rt-content N has CV value equal to five.�
�

19.1.3	Source value

The source value is a value used as the base of the comparison described in the previous condition and the current condition. The presence of the source value in the condition is mandatory.

The source value is always provided by an evaluated value, i.e. it is expressed as a result of a get action.

19.1.4	Comparison value

The comparison value is a value that is to be compared to the source value using the comparison operator in the previous and the current conditions. The presence of the comparison value in the condition is mandatory.

The comparison value is specified as one of the following:

1)	An evaluated value, i.e. it is expressed as a result of a get action.

2)	A constant value.

3)	One of the comparison value constants defined by this Recommendation, e.g. “ready”, “not ready” for the preparation status.

4)	“Unspecified” value to indicate that the value to be compared with the source is not important; what is important is that the value has changed. The following applies:

a)	Within a trigger condition:

i)	Within the previous condition: It means that the trigger condition is on a change of the source value whatever its previous value was.

ii)	Within the current condition: It means that it is a condition on a change of the source value whatever its current value becomes.

�
iii)	Within both the previous and the current condition: It means that it is a condition on a change of value whatever its previous value was and whatever its current value becomes.

The current value can be the same as the previous value, but the engine as wilfully set the same value to an attribute or a status. This is particularly useful for successive rising of the same event (see 6.3.7) or timestone (see 72.16.14), i.e. the same event may occur several times, each time the event identifier is set to the corresponding value.

b)	Within a constraint condition: It means that the constraint condition is always evaluated to true.

19.1.5	Previous condition

The previous condition is used in trigger condition only. It is composed of a comparison operator and a previous comparison value.

The previous comparison value is a generic value (see clause 11).

When the previous condition is omitted, the previous condition is to be interpreted as the negation of the indicated current condition, and the following applies:

·	the comparison operator of the previous condition is the negation of the comparison operator of the current condition;

·	the comparison value of the previous condition is the same as the comparison value of the current condition.

The previous condition is satisfied when the result of the comparison operation between the source value and the previous comparison value using the specified comparison operator is evaluated to true.

19.1.6	Current condition

The current condition is mandatory in a generic condition, and it is composed of a comparison operator and the current comparison value.

The current comparison value is a generic value (see clause 11).

The current condition is satisfied when the result of the comparison operation between the source value and the current comparison value using the specified comparison operator is evaluated to true.

19.1.7	Comparison operator

The comparison operator used in the previous and the current condition is one of the following:

·	= =	Comparison for equality;

·	!=	Comparison for inequality;

·	<	Comparison for strict inferiority;

·	<=	Comparison for inferiority or equality;

·	>	Comparison for strict superiority;

·	>=	Comparison for superiority or equality.

NOTE 1 – A using application may provide other comparison operators.

A comparison operation is a comparison between the source and a comparison value. The result of the comparison is as defined in Table 3.

�
Table 3/T.171 – Comparison operations

Comparison operator�
Source Value (SV)�
Comparison Value (CV)�
Result Value�(Boolean or “undefined”)�
Remarks�
�
= =�
Generic boolean�Generic numeric�Generic integer�Generic ratio�Generic string�Generic reference�Generic list�
Generic boolean�Generic numeric�Generic integer�Generic ratio�Generic string�Generic reference�Generic list�
True: if SV = = CV�False: otherwise�
����See 1)�See 2)�See 3)�See 4)�
�
!=�
Generic boolean�Generic numeric�Generic integer�Generic ratio�Generic string�Generic reference�Generic list�
Generic boolean�Generic numeric�Generic integer�Generic ratio�Generic string�Generic reference�Generic list�
True: if SV != CV�False: otherwise�
����See 1)�See 2)�See 3)�See 4)�
�
<�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
True: if SV < CV�False: otherwise�
��See 1)�See 4)�
�
<=�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
True: if SV <= CV�False: otherwise�
��See 1)�See 4)�
�
>�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
True: if SV > CV�False: otherwise�
��See 1)�See 4)�
�
>=�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
Generic numeric�Generic integer�Generic ratio�Generic list of generic numeric / generic integer / generic ratio�
True: if SV >= CV�False: otherwise�
��See 1)�See 4)�
�
Any�
Any�
CV type is not the same as SV type�
False�
See 5)�
�
Any�
Any SV type�“undefined”�“undefined”�“undefined”�
“undefined”�Any CV type�“unspecified”�“undefined”�
“undefined”�
See 6) �
�
Any�
Any SV type�
“unspecified”�
True�
See 7)�
�

This Recommendation does not define the semantics of operations on types of values different from those presented in Table 3. If such an operation is to be processed by the MHEG engine and if no semantics have been provided by the using application, this operation is evaluated to the value “undefined”.

NOTE 2 – True > False and “Hello” <= “Bye!” are evaluated to “undefined”.

In order to evaluate a result of some operations, the following applies:

1)	Two generic ratios shall be compared as follows:

a)	If the denominator is omitted, it is assumed as 100. For example: (10/100) = = (10/omitted) is true.

�
b)	A generic ratio is reduced if it is not irreducible. This reduction should be done only for comparison purposes. The value of the generic ratio still remains as it was before reduction. For example: (10/100) becomes (1/10) for comparison.

c)	A generic ratio is considered as a list containing two generic integer elements. So, the comparison between two lists applies (see below).

2)	The comparison between strings is made at the level of each character. The uppercase characters are distinguished from the lowercase characters.

	NOTE 3 – It is similar to a comparison between two lists (see below). The strings need to have the same size, and each character needs to be identical.

	NOTE 4 – Examples: Comparison of strings: “HELLO” = = “HELLO” is true. “hello” = = “HELLO” is false. “Hello” != “Hello” is false.

3)	The comparison of two references is made on the addressed entities. Two different references may address the same entity. In that case, the comparison for equality is evaluated to true. A comparison may be made between references addressing groups of entities. In that case, the comparison is made at the level of the addressed entities. The comparison for equality between two groups not having the same number of entities is evaluated to false. When the MHEG engine is unable to compare two references, the result of the comparison is evaluated to the value “undefined”.

	NOTE 5 – This situation may occur when references are not yet resolved by the MHEG engine or when a reference addresses an unknown object.

	NOTE 6 – For example: A content object has an MHEG-ID as 1000 and its external ID is “e:\mydir\content.mhg”. 1000 = = “e:\mydir\content.mhg” is true. If an alias, e.g. ContentA, is assigned to this content, ContentA = = 1000 is true, ContentA != “e:\mydir\content.mhg” is false.

4)	Two lists shall be compared as follows:

a)	If the two lists have different lengths (i.e. not the same number of elements), the result of the comparison is evaluated to false.

b)	If the two lists have the same length (i.e. the same number of elements), the comparison is realised at the level of each element. Two elements in the same position of the two lists are compared using the comparison operator:

i)	If one of the comparisons at the level of elements is evaluated to false, the comparison at the level of the list is evaluated to false.

ii)	If one of the comparisons at the level of elements is evaluated to “undefined”, the comparison at the level of the list is evaluated to “undefined”.

iii)	Otherwise the comparison at the list level is evaluated to true. A logical AND operation is processed between the result of each compared elements.

c)	Two lists of length zero are considered to be strictly equal. For example: comparison of generic list of generic numeric: (2, 3, 5) = = (2, 3) is false, (2, 3, 5) = = (2, 3, 5) is true, (2, 3, 5) = = (2, 4, 5) is false, (2, 3, 5) > (0, 1, 6) is false because 6 > 5, () <= () is true.

5)	The result of a comparison between non-compatible types is always evaluated to the value false. For example: comparison of non-compatible values: 3 != true is false, 5 != “a” is false.

6)	The comparison of two values is always gives the value “undefined” if one of the values is an “undefined” value. For example: (2, 3, 5) = = (2, undefined, 5) is “undefined”, (2, 3, 5) > (0, 1, undefined) is “undefined”, “undefined” = = “undefined” is “undefined”, “undefined” = = “unspecified” is “undefined”.

7)	A given comparison value may be specified by the author as “unspecified” in the place of any comparison value. The comparison of a value with an “unspecified” value always gives true except if the value to be compared is “undefined”.

	NOTE 7 – For example: (2, 5, 7) <= (2, unspecified, unspecified) is true, (2, 5, 7) >= (2, unspecified, unspecified) is true, “Hello” = = unspecified is true, “undefined” <= “unspecified” is “undefined”.

	NOTE 8 – Distinguish clearly between “undefined” and “unspecified” values. The value “undefined” is not provided by an author. It is always a result of a get action with an error or a result of a comparison operation containing a source value or a comparison value evaluated to “undefined”. The value “unspecified” is a wilful omission by the author.

�
19.1.8	Logical combination

A logical combination of conditions is defined as follows:

1)	A logical operator defines a logical operator to be applied to the list of conditions.

2)	A list of conditions. Each condition is either a trigger condition, a constraint condition, or another logical combination of conditions. It is a recursive structure. If the operator NOT is used, the list of conditions shall contain only one condition. If the other operators are used, the list of conditions shall contain at least two conditions.

A logical combination of conditions has the form of a logical tree. The leaves of the logical tree are trigger or constraint conditions. A logical operator is attached to each node.

The two trees described in Figure 25 show different combinations of conditions. Any other types of combinations may be provided. Some combinations are meaningless, for example OR (Trigger Condition K, Trigger Condition L, Constraint Condition M). In that case, the constraint condition is useless.

The evaluation of the logical combination of conditions is as follows:

1)	Each trigger condition is evaluated as specified in 19.1.1.

2)	Each time one of the trigger conditions becomes true, the following applies:

a)	each constraint condition is evaluated as specified in 0;

b)	then each node is evaluated as follows in a bottom up manner:

i)	the logical operator attached to the node is applied on the evaluated conditions attached to this node, as specified in 19.1.9;

ii)	each node evaluates the result of the previous logical operation, i.e. a boolean value or “undefined”.

3)	The link condition evaluates the value of the top node, i.e. the logical tree’s root in Figure 25.

19.1.9	Logical operator

The logical operator is used within a logical operation. The following logical operators are defined:

1)	AND:	logical and;

2)	OR: 	logical or;

3)	XOR:	logical exclusive or;

4)	NOT:	logical negation.

A logical operation is composed of a logical operator and a list of operands. The result of the logical operation is evaluated as follows when the operator NOT is used:

1)	If the operator NOT is used with one operand, the result is as follows:

a)	NOT True	evaluates:	False

b)	NOT False	evaluates:	True

c)	NOT “undefined”	evaluates:	“undefined”

2)	Otherwise the result is “undefined”.

The result of the logical operation is evaluated as follows when operator NOT is used:

1)	If the operator AND, OR or XOR is used with n operands, n greater than 2, the logical operation is decomposed in n-1 operations, that are evaluated from left to right.

For example: AND (c1, c2, c3, ..., cn-1, cn) is decomposed as �AND(...AND(AND(AND(c1, c2), c3), ...), cn)

2)	If the operator AND is used on two operands, the result is as follows:

a)	True AND True	evaluates:	True

b)	False AND False	evaluates:	False

c)	“undefined” AND “undefined”	evaluates:	“undefined”

d)	True AND False	evaluates:	False

e)	True AND “undefined”	evaluates:	“undefined”

f)	False AND “undefined”	evaluates:	“undefined”

�
3)	If the operator OR is used on two operands, the result is as follows:

a)	True OR True	evaluates:	True

b)	False OR False	evaluates:	False

c)	“undefined” OR “undefined”	evaluates:	“undefined”

d)	True OR False	evaluates:	True

e)	True OR “undefined”	evaluates:	True

f)	False OR “undefined”	evaluates:	False

4)	If the operator XOR is used on two operands, the result is as follows:

a)	True XOR True	evaluates:	False

b)	False XOR False	evaluates:	False

c)	“undefined” XOR “undefined”	evaluates:	“undefined”

d)	True XOR False	evaluates:	True

e)	True XOR “undefined”	evaluates:	“undefined”

f)	False XOR “undefined”	evaluates:	“undefined”

5)	If the operator AND, OR or XOR is used on one operand, the result is “undefined”.

19.2	Link Effect

The link effect contains the following information:

1)	An optional macro resolution used to assign a usage value to each macro parameter. The macro resolution is defined as a list of macro parameter resolutions. Each macro parameter resolution is defined as:

a)	macro Def ID identifies one of the macro parameters;

b)	macro usage value specified as a generic value.

2)	An action, which may be a Basic action object (see 18.2), a nested action object (see 18.3) or a macro action object (see 18.4).

The link effect is processed as specified in 31.2 when the link condition becomes satisfied, i.e. it becomes evaluated to true.

19.3	Basic link object

A basic link object is defined as a combination of a basic link condition and a basic link effect. The combinations that can be made can form a simple link object or a more complex one.

A basic link condition does not contain any macro parameter. The following basic link conditions can be defined:

1)	TC;

2)	simple logical combination of conditions, e.g. TC AND CC, TC1 OR TC2;

3)	complex logical combination of TC and CC, e.g. NOT (((TC1 AND CC1) OR (TC2 AND NOT (CC3) AND CC4 AND CC5)) XOR (TC3 AND CC6)).

A basic link effect does not contain any Activate actions (targeted to link objects). The following basic link effects can be defined:

1)	no macro parameter resolution and a basic action object;

2)	no macro parameter resolution and a nested action object;

3)	a set of macro parameter resolution and a macro action.

19.4	Nested link object

In order to describe more complex behaviour, a nested link object may be provided by an author. A nested link object contains an Activate elementary action within its link effect. The target of this Activate elementary action is called embedded link object. When the nested link object fires, the embedded link object is activated.

�
The embedded link object can be itself a nested link object. A complete hierarchy of link objects can be designed using this mechanism.

NOTE – For example, considering the link objects L1, L2 and L3 as follows:

·	L1 has LE1 as (run Image1, activate L2);

·	L2 has LE2 as (run Image2, activate L3);

·	L3 has LE3 as (run Content6).

If the link condition of L1 is satisfied, presentation of Image1 begins and embedded L2 is activated each time due to the LE1. If the link condition of L2 is satisfied after this activation of L2, presentation of Image2 begins and embedded L3 is activated due to the LE2. And so on.

The links L2 and L3 are called embedded links from the L1 point of view. The link L3 is called embedded link from the L2 point of view.

19.5	Macro link object

In order to produce efficient coding of frequently used link objects in which only a few values change from one link condition to another, a macro link object is an embedded link object which contains at least one macro parameter value within its link condition. Each macro parameter value is resolved when it is activated from a nested link object (see 6.3.13).

NOTE – The macro link object needs to be an embedded link object, otherwise the macro parameter value will never be resolved, so the link condition described will never be satisfied.

20	Structure of Model Class

The model objects, instance of model classes, may be interchanged within or across using applications. A model object is considered as a template object. From this model, rt-objects may be created based on instructions given by the author.

The model class is an abstract class inherited by script class and component class.

Any number of rt-objects may be created from a given model object. The activation of an rt-object does not affect the model object. This allows the reuse of the same model object in different contexts, i.e. different rt-objects.

The internal representation of the rt-objects is not defined by this Recommendation. Each MHEG engine will have its own internal representation technique.

NOTE – The model class contains no interchange attribute.

21	Structure of Script Class

An MHEG script class is defined for specifying complex conditional actions upon MHEG entities. The script objects, instances of script class, may be interchanged within or across applications. A script object is as a model object. From this model, rt-scripts may be created based on instructions given by the author.

The MHEG script class provides the following information for the interchange of scripts.

·	Optional script classification (see clause 14): Provides as an assistance in determining the type of the script data.

·	Script hook (see clause 14): Identifies the scripting language and describes the encoding and decoding information enabling the use of the script data. It is composed of an identififcation and a description of the scripting language.

·	Script data: Inclusion or reference of the encoded script itself or to a “Null-Data”.

22	Structure of Component Class

The component class is an abtract class inherited by content class and composite class.

The component objects, instances of component classes, may be interchanged within or across using applications.

A component object is a model object. From this model, rt-components may be created based on instructions given by the author.

�PAGE�72�	�styleref head_foot�Recommendation T.171 (10/96)�

		�styleref head_foot�Recommendation T.171 (10/96)�	�PAGE�63�

