��

INTERNATIONAL TELECOMMUNICATION UNION��

ITU-T�T.172��TELECOMMUNICATION�STANDARDIZATION SECTOR�OF ITU�(02/98) ��

SERIES T: TERMINALS FOR TELEMATIC SERVICES

MHEG-5 – Support for base-level interactive applications

ITU-T Recommendation T.172

(Previously CCITT Recommendation)

�ITU-T T-SERIES RECOMMENDATIONS

TERMINALS FOR TELEMATIC SERVICES

������For further details, please refer to ITU-T List of Recommendations.

�ITU-T RECOMMENDATION T.172

MHEG-5 – support for base-level interactive applications��

Summary

This Recommendation specifies semantics and final-form interchange syntax for MHEG-5 objects, based on concepts defined in Recommendation T.171. These objects are intended for use in the domain of simple client/server interactive multimedia applications, e.g. (Near) Video-on-Demand applications, navigation and browsing applications.��

Source

ITU-T Recommendation T.172 was prepared by ITU-T Study Group 16 (1997-2000) and was approved under the WTSC Resolution No. 1 procedure on the 6th of February 1998.

This Recommendation is technically aligned with the International Standard ISO/IEC 13522-5.��

��

�FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU�T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU�T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

ã ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

�CONTENTS

	Page

1	Scope		1

1.1	Specificity of the scope		1

1.2	Issues outside the scope of this Recommendation		1

2	Normative references		1

3	Terms and definitions		2

4	Conformance		3

4.1	Conformance of MHEG-5 objects		3

4.2	Conformance of MHEG-5 engines		4

4.2.1	Conformance to the acceptance of a set of Classes and Elementary Actions		4

4.2.2	Conformance to a set of engine functionality		4

4.2.3	Additional requirements for conformance specification		5

5	Overview of the MHEG-5 classes		7

5.1	Root		9

5.2	Group		9

5.3	Application		9

5.4	Scene		9

5.5	Ingredient		9

5.6	Link		10

5.7	Action		10

5.8	Program		10

5.9	Palette, Font, and CursorShape		11

5.10	Variable		11

5.11	Presentable		11

5.12	TokenGroup		12

5.13	ListGroup		12

5.14	Stream		12

5.15	Audio		12

5.16	Interactible		13

5.17	Visible		13

6	Structure of this Recommendation		14

7	Notations		14

7.1	Attributes		14

7.1.1	Inherited attributes		15

�	Page

7.1.2	Own exchanged attributes		15

7.1.3	Own internal attributes		15

7.2	Events		15

7.3	Internal behaviours		15

7.4	Effect of MHEG-5 actions		16

7.5	Formal description		16

8	Root Class		16

8.1	Attributes		16

8.1.1	Inherited attributes		16

8.1.2	Own exchanged attributes		16

8.1.3	Own internal MHEG-5 attributes		17

8.2	Events		17

8.3	Internal behaviours		18

8.4	Effect of MHEG-5 actions		20

8.5	Formal description		20

9	Group Class		20

9.1	Attributes		21

9.1.1	Inherited attributes		21

9.1.2	Own exchanged attributes		21

9.1.3	Own internal attributes		22

9.2	Events		22

9.3	Internal behaviours		23

9.4	Effect of MHEG-5 actions		23

9.5	Formal description		24

10	Application Class		25

10.1	Attributes		25

10.1.1	Inherited attributes		25

10.1.2	Own exchanged attributes		25

10.1.3	Own internal attributes		28

10.2	Events		28

10.3	Internal behaviours		29

10.4	Effect of MHEG-5 actions		29

10.5	Formal description		36

11	Scene Class		36

11.1	Attributes		36

�	Page

11.1.1	Inherited attributes		36

11.1.2	Own exchanged attributes		37

11.1.3	Own internal attributes		38

11.2	Events		38

11.3	Internal behaviours		39

11.4	Effect of MHEG-5 actions		39

11.5	Formal description		44

12	Ingredient Class		44

12.1	Attributes		44

12.1.1	Inherited attributes		44

12.1.2	Own exchanged attributes		45

12.1.3	Own internal attributes		46

12.2	Events		47

12.3	Internal behaviours		47

12.4	Effect of MHEG-5 actions		47

12.5	Formal description		50

13	Link Class		50

13.1	Attributes		50

13.1.1	Inherited attributes		50

13.1.2	Own exchanged attributes		50

13.1.3	Own internal attributes		51

13.2	Events		51

13.3	Internal behaviours		51

13.4	Effect of MHEG-5 actions		51

13.5	Formal description		52

14	Program Class		53

14.1	Attributes		53

14.1.1	Inherited attributes		53

14.1.2	Own exchanged attributes		53

14.1.3	Own internal attributes		53

14.2	Events		53

14.3	Internal behaviours		54

14.4	Effect of MHEG-5 actions		54

14.5	Formal description		56

15	ResidentProgram Class		57

�	Page

15.1	Attributes		57

15.1.1	Inherited attributes		57

15.1.2	Own exchanged attributes		57

15.1.3	Own internal attributes		57

15.2	Events		57

15.3	Internal behaviours		57

15.4	Effect of MHEG-5 actions		57

15.5	Formal description		57

16	RemoteProgram Class		58

16.1	Attributes		58

16.1.1	Inherited attributes		58

16.1.2	Own exchanged attributes		58

16.1.3	Own internal attributes		58

16.2	Events		58

16.3	Internal behaviours		58

16.4	Effect of MHEG-5 actions		59

16.5	Formal description		59

17	InterchangedProgram Class		59

17.1	Attributes		59

17.1.1	Inherited attributes		59

17.1.2	Own exchanged attributes		59

17.1.3	Own internal attributes		59

17.2	Events		60

17.3	Internal behaviours		60

17.4	Effect of MHEG-5 actions		60

17.5	Formal description		60

18	Palette Class		60

18.1	Attributes		60

18.1.1	Inherited attributes		60

18.1.2	Own exchanged attributes		60

18.1.3	Own internal attributes		60

18.2	Events		60

18.3	Internal behaviours		60

18.4	Effect of MHEG-5 actions		61

18.5	Formal description		61

�	Page

19	Font Class		61

19.1	Attributes		61

19.1.1	Inherited attributes		61

19.1.2	Own exchanged attributes		61

19.1.3	Own internal attributes		61

19.2	Events		61

19.3	Internal behaviours		61

19.4	Effect of MHEG-5 actions		61

19.5	Formal description		61

20	CursorShape Class		62

20.1	Attributes		62

20.1.1	Inherited attributes		62

20.1.2	Own exchanged attributes		62

20.1.3	Own internal attributes		62

20.2	Events		62

20.3	Internal behaviours		62

20.4	Effect of MHEG-5 actions		62

20.5	Formal description		62

21	Variable Class		62

21.1	Attributes		63

21.1.1	Inherited attributes		63

21.1.2	Own exchanged attributes		63

21.1.3	Own internal attributes		63

21.2	Events		63

21.3	Internal behaviours		63

21.4	Effect of MHEG-5 actions		63

21.5	Formal description		65

22	BooleanVariable Class		65

22.1	Attributes		65

22.1.1	Inherited attributes		65

22.1.2	Own exchanged attributes		65

22.1.3	Own internal attributes		66

22.2	Events		66

22.3	Internal behaviours		66

22.4	Effect of MHEG-5 actions		66

�	Page

22.5	Formal description		66

23	IntegerVariable Class		66

23.1	Attributes		66

23.1.1	Inherited attributes		66

23.1.2	Own exchanged attributes		66

23.1.3	Own internal attributes		66

23.2	Events		66

23.3	Internal behaviours		67

23.4	Effect of MHEG-5 actions		67

23.5	Formal description		69

24	OctetStringVariable Class		69

24.1	Attributes		69

24.1.1	Inherited attributes		69

24.1.2	Own exchanged attributes		69

24.1.3	Own internal attributes		69

24.2	Events		69

24.3	Internal behaviours		69

24.4	Effect of MHEG-5 actions		70

24.5	Formal description		70

25	ObjectRefVariable Class		70

25.1	Attributes		70

25.1.1	Inherited attributes		71

25.1.2	Own exchanged attributes		71

25.1.3	Own internal attributes		71

25.2	Events		71

25.3	Internal behaviours		71

25.4	Effect of MHEG-5 actions		71

25.5	Formal description		71

26	ContentRefVariable Class		71

26.1	Attributes		71

26.1.1	Inherited attributes		71

26.1.2	Own exchanged attributes		71

26.1.3	Own internal attributes		72

26.2	Events		72

26.3	Internal behaviours		72

�	Page

26.4	Effect of MHEG-5 actions		72

26.5	Formal description		72

27	Presentable Class		72

27.1	Attributes		72

27.1.1	Inherited attributes		72

27.1.2	Own exchanged attributes		72

27.1.3	Own internal attributes		72

27.2	Events		72

27.3	Internal behaviours		73

27.4	Effect of MHEG-5 actions		73

27.5	Formal description		73

28	TokenManager Class		73

28.1	Attributes		74

28.1.1	Inherited attributes		74

28.1.2	Own exchanged attributes		74

28.1.3	Own internal attributes		75

28.2	Events		75

28.3	Internal behaviours		75

28.4	Effect of MHEG-5 actions		76

28.5	Formal description		77

29	TokenGroup Class		77

29.1	Attributes		77

29.1.1	Inherited attributes		77

29.1.2	Own exchanged attributes		78

29.1.3	Own internal attributes		78

29.2	Events		78

29.3	Internal behaviours		78

29.4	Effect of MHEG-5 actions		79

29.5	Formal description		79

30	ListGroup Class		80

30.1	Attributes		80

30.1.1	Inherited attributes		80

30.1.2	Own exchanged attributes		80

30.1.3	Own internal attributes		81

30.2	Events		83

�	Page

30.3	Internal behaviours		84

30.4	Effect of MHEG-5 actions		86

30.5	Formal description		91

31	Visible Class		91

31.1	Attributes		91

31.1.1	Inherited attributes		91

31.1.2	Own exchanged attributes		91

31.1.3	Own internal attributes		92

31.2	Events		92

31.3	Internal behaviours		93

31.4	Effect of MHEG-5 actions		93

31.5	Formal description		98

32	Bitmap Class		99

32.1	Attributes		99

32.1.1	Inherited attributes		99

32.1.2	Own exchanged attributes		99

32.1.3	Own internal attributes		99

32.2	Events		100

32.3	Internal behaviours		100

32.4	Effect of MHEG-5 actions		100

32.5	Formal description		101

33	LineArt Class		101

33.1	Attributes		101

33.1.1	Inherited attributes		101

33.1.2	Own exchanged attributes		101

33.1.3	Own internal attributes		103

33.2	Events		103

33.3	Internal behaviours		103

33.4	Effect of MHEG-5 actions		103

33.5	Formal description		106

34	Rectangle Class		106

34.1	Attributes		106

34.1.1	Inherited attributes		106

34.1.2	Own exchanged attributes		106

34.1.3	Own internal attributes		107

�	Page

34.2	Events		107

34.3	Internal behaviours		107

34.4	Effect of MHEG-5 actions		107

34.5	Formal description		107

35	DynamicLineArt Class		107

35.1	Attributes		107

35.1.1	Inherited attributes		107

35.1.2	Own exchanged attributes		107

35.1.3	Own internal attributes		107

35.2	Events		107

35.3	Internal behaviours		107

35.4	Effect of MHEG-5 actions		108

35.5	Formal description		114

36	Text Class		114

36.1	Attributes		114

36.1.1	Inherited attributes		115

36.1.2	Own exchanged attributes		115

36.1.3	Own internal attributes		117

36.2	Events		118

36.3	Internal behaviours		118

36.4	Effect of MHEG-5 actions		118

36.5	Formal description		120

37	Stream Class		120

37.1	Attributes		120

37.1.1	Inherited attributes		120

37.1.2	Own exchanged attributes		121

37.1.3	Own internal attributes		121

37.2	Events		123

37.3	Internal behaviours		124

37.4	Effect of MHEG-5 actions		124

37.5	Formal description		127

38	Audio Class		127

38.1	Attributes		128

38.1.1	Inherited attributes		128

�	Page

38.1.2	Own exchanged attributes		128

38.1.3	Own internal attributes		128

38.2	Events		128

38.3	Internal behaviours		128

38.4	Effect of MHEG-5 actions		129

38.5	Formal description		129

39	Video Class		130

39.1	Attributes		130

39.1.1	Inherited attributes		130

39.1.2	Own exchanged attributes		130

39.1.3	Own internal attributes		130

39.2	Events		130

39.3	Internal behaviours		131

39.4	Effect of MHEG-5 actions		131

39.5	Formal description		131

40	RTGraphics Class		132

40.1	Attributes		132

40.1.1	Inherited attributes		132

40.1.2	Own exchanged attributes		132

40.1.3	Own internal attributes		132

40.2	Events		132

40.3	Internal behaviours		132

40.4	Effect of MHEG-5 actions		133

40.5	Formal description		133

41	Interactible Class		133

41.1	Attributes		133

41.1.1	Inherited attributes		133

41.1.2	Own exchanged attributes		133

41.1.3	Own internal attributes		134

41.2	Events		135

41.3	Internal behaviours		136

41.4	Effect of MHEG-5 actions		136

41.5	Formal description		138

42	Slider Class		138

�	Page

42.1	Attributes		138

42.1.1	Inherited attributes		138

42.1.2	Own exchanged attributes		138

42.1.3	Own internal attributes		141

42.2	Events		141

42.3	Internal behaviour		141

42.4	Effect of MHEG-5 actions		141

42.5	Formal description		144

43	EntryField Class		144

43.1	Attributes		144

43.1.1	Inherited attributes		144

43.1.2	Own exchanged attributes		145

43.1.3	Own internal attributes		146

43.2	Events		146

43.3	Internal behaviours		147

43.4	Effect of MHEG-5 actions		147

43.5	Formal description		149

44	HyperText Class		149

44.1	Attributes		149

44.1.1	Inherited attributes		149

44.1.2	Own exchanged attributes		149

44.1.3	Own internal attributes		149

44.2	Events		149

44.3	Internal behaviours		150

44.4	Effect of MHEG-5 actions		150

44.5	Formal description		150

45	Button Class		150

45.1	Attributes		151

45.1.1	Inherited attributes		151

45.1.2	Own exchanged attributes		151

45.1.3	Own internal attributes		151

45.2	Events		151

45.3	Internal behaviours		152

45.4	Effect of MHEG-5 actions		152

45.5	Formal description		153

�	Page

46	Hotspot Class		153

46.1	Attributes		153

46.1.1	Inherited attributes		153

46.1.2	Own exchanged attributes		154

46.1.3	Own internal attributes		154

46.2	Events		154

46.3	Internal behaviours		154

46.4	Effect of MHEG-5 actions		154

46.5	Formal description		154

47	PushButton Class		154

47.1	Attributes		154

47.1.1	Inherited attributes		154

47.1.2	Own exchanged attributes		155

47.1.3	Own internal attributes		155

47.2	Events		155

47.3	Internal behaviours		155

47.4	Effect of MHEG-5 actions		155

47.5	Formal description		156

48	SwitchButton Class		157

48.1	Attributes		157

48.1.1	Inherited attributes		157

48.1.2	Own exchanged attributes		157

48.1.3	Own internal attributes		157

48.2	Events		157

48.3	Internal behaviours		157

48.4	Effect of MHEG-5 actions		158

48.5	Formal description		159

49	Action Class		159

49.1	Attributes		159

49.1.1	Inherited attributes		159

49.1.2	Own exchanged attributes		159

49.2	Own internal attributes		159

49.3	Formal description		160

50	Referencing Objects, Content, Values, Colour and XYPosition		160

50.1	ObjectReference		160

�	Page

50.2	ContentReference		161

50.3	GenericObjectReference		161

50.4	GenericContentReference		161

50.5	GenericInteger		161

50.6	GenericBoolean		162

50.7	GenericOctetString		162

50.8	Colour		162

50.9	XYPosition		162

50.10	Resolution of generic values		162

51	Referencing MHEG-5 Objects		163

52	Name Spaces, RemoteProgram Calls and Connections		164

53	Event handling		164

53.1	Types of events		164

53.2	Synchronous events and asynchronous events		165

53.3	Event handling and Links		166

53.4	User input		166

53.5	User interaction		167

53.6	Cursor events		167

53.7	Error handling		167

54	Rendering Visibles		167

54.1	Coordinate system		167

54.2	Bounding box		168

54.3	Display stack		169

54.4	Transparent objects		169

54.5	Pixel aspect ratio		170

Annex A – ASN.1 notation		170

Annex B – Textual notation for MHEG-5 applications		195

B.1	General definitions		195

B.1.1	Code		195

B.1.2	Delimiter		195

B.1.3	Comment		195

B.1.4	Tag		195

B.2	Definitions of symbols		196

B.3	Terminal symbols		196

�	Page

B.3.1	INTEGER		196

B.3.2	BOOLEAN		196

B.3.3	STRING		196

B.3.4	QPRINTABLE		197

B.3.5	BASE64		197

B.3.6	Null		197

B.3.7	Enumeration values		197

B.4	MHEG-5 Object Definitions		197

B.4.1	Root Class		198

B.4.2	Group Class		198

B.4.3	Application Class		199

B.4.4	Scene Class		199

B.4.5	Ingredient Class		200

B.4.6	Link Class		200

B.4.7	Program Class		200

B.4.8	ResidentProgram Class		200

B.4.9	RemoteProgram Class		201

B.4.10	InterchangedProgram Class		201

B.4.11	Palette Class		201

B.4.12	Font Class		201

B.4.13	CursorShape Class		201

B.4.14	Variable Class		201

B.4.15	BooleanVariable Class		201

B.4.16	IntegerVariable Class		201

B.4.17	OctetStringVariable Class		201

B.4.18	ObjectRefVariable Class		201

B.4.19	ContentRefVariable Class		201

B.4.20	Presentable Class		201

B.4.21	TokenManager Class		202

B.4.22	TokenGroup Class		202

B.4.23	ListGroup Class		202

B.4.24	Visible Class		202

B.4.25	Bitmap Class		202

B.4.26	LineArt Class		202

B.4.27	Rectangle Class		203

B.4.28	DynamicLineArt Class		203

B.4.29	Text Class		203

B.4.30	Stream Class		203

B.4.31	Audio Class		203

�	Page

B.4.32	Video Class		203

B.4.33	RTGraphics Class		203

B.4.34	Interactible Class		204

B.4.35	Slider Class		204

B.4.36	EntryField Class		204

B.4.37	HyperText Class		204

B.4.38	Button Class		204

B.4.39	Hotspot Class		204

B.4.40	PushButton Class		204

B.4.41	SwitchButton Class		204

B.4.42	Action Class		205

B.4.43	Referencing Objects, Contents, Values, Colour and Position		212

Appendix I – Bootstrap of an MHEG-5 engine		212

Appendix II – Definition of application domains		213

II.1	Object interchange format		213

II.2	Set of classes		213

II.3	Set of features		213

II.4	Content data encoding		214

II.5	UserInput registers		214

II.6	Semantic constraints on the MHEG-5 applications		215

II.7	EngineEvent		216

II.8	GetEngineSupport		216

II.9	Protocol mapping and external interaction		216

�Recommendation T.172

MHEG-5 – Support for base-level interactive applications

(Geneva, 1998)

1	Scope

This Recommendation specifies semantics and final-form interchange syntax for MHEG-5 objects, based on concepts defined in Recommendation T.171. These objects are intended for use in the domain of simple client/server interactive multimedia applications, e.g. (Near) Video-on-Demand applications, navigation and browsing applications.

1.1	Specificity of the scope

Since it is expected that this Recommendation be used for interoperability of applications across platforms, the scope focuses on a specific and precise definition of MHEG-5 classes. This Recommendation recognizes the semantics implied by the specification of the MHEG-5 objects and by interpretation of MHEG-5 behaviours within the using system.

1.2	Issues outside the scope of this Recommendation

The scope excludes any standardization of models, services, systems, protocols or applications that are likely to make use of MHEG-5 objects.

The coded representation of content data is not in the scope of this Recommendation.

2	Normative references

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

–	ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation.

–	ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:1995, Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).

–	ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.

–	RFC 1521 (1993), MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies.

�3	Terms and definitions

This Recommendation defines the following terms:

3.1	abstract class: Class that is never instantiated into an interchangeable MHEG-5 object.

NOTE – An abstract class defines attributes, behaviours and semantics of actions that may be exchanged as parts of any MHEG-5 object of the concrete subclasses of this abstract class.

3.2	action: Set of elementary actions.

3.3	active: State of any MHEG-5 object when the Activation behaviour has been completed successfully for this object.

An active object has its RunningStatus set to True.

3.4	application domain: Specific domain of applications making use of this Recommendation and providing additional tools and values in order to create a practical instance of an MHEG-5 environment.

NOTE – More information on application domains is provided in Appendix II.

3.5	application scope: Common scope of all MHEG-5 objects (scenes and ingredients) accessed from an MHEG-5 application.

3.6	attribute: Named and typed value attached to a class.

3.7	available: State of any MHEG-5 object when the Preparation behaviour has been completed successfully for this object.

An available object has its AvailabilityStatus set to True.

3.8	base class: MHEG-5 class which defines some attributes, behaviours and semantics of actions that are shared by a given MHEG-5 class.

3.9	concrete class: Class of any MHEG-5 object that may be encoded and interchanged according to the specifications provided in Annex A or Annex B.

3.10	elementary action: Abstract representation of a message that may be sent to an object.

NOTE – This Recommendation defines the semantics of available elementary actions for each MHEG-5 class. Note that the MHEG-5 class Action (with a capital A) has a different meaning described in clause 49.

3.11	event: Abstract representation of an occurrence of a special meaning for any MHEG-5 object.

NOTE – Events are used to trigger Link conditions and bring out the execution of sequences of elementary actions.

3.12	exchanged attribute: Attribute that is part of the interchangeable byte-code representation of an MHEG-5 object, and transmitted with that object.

3.13	inactive: State of any MHEG-5 object when the Deactivation behaviour has been completed successfully or when no Activation behaviour has been applied successfully on this object.

An inactive MHEG-5 object has its RunningStatus set to False.

3.14	inherited attribute: Attribute that is defined in a base class of the class of the MHEG-5 object.

3.15	interchangeable representation: Octet string, which contains the encoded exchanged attributes of this MHEG-5 object complying with the ASN.1 syntax and encoding provided in Annex A or, when textual representation is preferred, with Annex B.

�3.16	internal attribute: Abstract data structure, never byte-code encoded or exchanged, that is used to define semantics of internal behaviours or actions for any MHEG-5 object.

NOTE – Any MHEG-5 engine might consider that an internal attribute is part of the internal representation of the MHEG-5 object; however, this is not mandatory. What is mandatory is to implement the functionality described by these internal attributes.

3.17	internal behaviour: Abstract function that defines the semantics of MHEG-5 elementary actions for any MHEG-5 class.

NOTE – An internal behaviour of a class is most of the time overridden by internal behaviours of subclasses of this class. An MHEG-5 engine might consider that an internal behaviour of a class is a private method of this class; however, this is not mandatory.

3.18	MHEG-5 application: Set of scenes and control information that allows the user to navigate between scenes.

NOTE – The MHEG-5 class Application (with a capital A) has a different, more specific, meaning that is given in clause 10.

3.19	MHEG-5 class: Abstract definition of exchanged and internal attributes of parts of interchangeable multimedia/hypermedia objects as well as definition of the semantics of internal behaviours and the effect of MHEG-5 actions for these objects.

3.20	MHEG-5 engine: Process or set of processes that interpret MHEG-5 objects encoded according to the encoding specifications defined in Annex A or in Annex B.

3.21	MHEG-5 object: Instance of any MHEG-5 class.

NOTE – An MHEG-5 object is not a physical object, but rather an abstraction that may have many representations of different types. Various software services handle such representations.

3.22	MHEG-5 scene: Structure that coordinates the presentation (visual and audible) of MHEG-5 objects.

3.23	mix-in class: Abstract class that does not inherit from the Root class.

Examples: Interactible class, TokenManager class.

3.24	non-available: State of any MHEG-5 object when the Destruction behaviour has been completed successfully or when no Preparation behaviour has been applied successfully on this object.

A non-available object has its AvailabilityStatus set to FALSE. Even if an MHEG-5 object does not exist in the MHEG-5 engine, its AvailabilityStatus exists and is set to FALSE.

3.25	subclass: Any MHEG-5 class that shares the same attributes, behaviours and semantics of actions as another MHEG-5 class.

4	Conformance

This clause specifies conformance requirements for MHEG-5 engines and for MHEG-5 applications.

4.1	Conformance of MHEG-5 objects

Any MHEG-5 object shall have an octet representation. For interchange purposes, the octet representation shall be compliant with the ASN.1 syntax and encoding defined in Annex A, or with the textual notation grammar defined in Annex B. The application domain shall choose which representation to use: that of Annex A or that of Annex B, and that representation shall then be used exclusively throughout the application domain.

�The attributes of any MHEG-5 object shall meet all requirements defined in the relevant subclauses of this Recommendation.

4.2	Conformance of MHEG-5 engines

Conformance of MHEG-5 engines can only be measured with regard to a complete application domain definition. To fully specify conformance, an application domain shall define, in addition to the interchange representation, the following:

1)	a set of classes from the list of all classes of this Recommendation, as prescribed in 4.2.1;

2)	a set of features from the list in 4.2.2;

3)	additional concrete choices as listed in 4.2.3.

NOTE – Refer to Appendix II for an example of complete definition of an application domain.

4.2.1	Conformance to the acceptance of a set of Classes and Elementary Actions

Conformance to the acceptance of a set of Classes and Elementary Actions is defined as follows.

Any MHEG-5 engine is required to implement at least the following minimum set of classes:

•	Application Class

	All attributes, events and internal behaviours shall be implemented.

•	Scene Class

	All attributes, events and internal behaviours shall be implemented.

•	Link Class

	All attributes, events and internal behaviours shall be implemented.

•	Action Class

	All attributes, events and internal behaviours shall be implemented.

All application domains shall define compliance to a set of classes containing at least the minimum set above. An application domain may specify a larger set of classes and elementary actions for compliance; in any case, the application domain shall clearly list the classes and elementary actions supported.

When additional classes are implemented in any MHEG-5 engine, the engine shall implement all of their attributes, events, internal behaviours and elementary actions as defined in this Recommendation, with the possible exception of optional features listed in 4.2.2. Concerning the Action class, the engine shall implement all effects of MHEG-5 elementary actions corresponding to the specified set of classes. It is the role of each application domain to choose and well define a set of classes that is required for that specific application domain.

If a class is not handled by an MHEG-5 engine, and an object of this class is sent to the MHEG-5 engine, this causes an error that is handled by the default error handling defined in 53.7.

4.2.2	Conformance to a set of engine functionality

Conformance to a set of engine functionality is defined as follows.

Any MHEG-5 engine shall provide all normative mechanisms defined in clauses 51 to 54.

Any MHEG-5 engine shall implement all effects of MHEG-5 actions and the internal behaviours of MHEG-5 classes included in the definition of their application domain, except for the following optional features:

•	Ancillary connections (corresponding to OpenConnection and CloseConnection actions);

�•	Caching (corresponding to caching of MHEG-5 objects and content data of Ingredient objects);

•	Cloning (corresponding to the Clone action defined in Ingredient class);

•	Free-moving cursor;

•	Bitmap and Video scaling (corresponding to the ScaleBitmap and ScaleVideo actions of the Bitmap and Video classes);

•	Stacking of Applications (corresponding to the Spawn action of the Application class);

•	Trick mode (corresponding to the SetSpeed action of the Stream class).

An application domain shall clearly define a list of which ones of the above features are mandatory or optional for conformance to the application domain.

4.2.3	Additional requirements for conformance specification

In addition to the two items above, the following tables shall be specified by a given application domain to fully define conformance.

NOTE – For each one of these tables, a concrete example is given in Appendix II, thus defining an example of application domain.

•	Content data encoding

	The application domain shall specify which type of content data is supported and which type of encoding is supported. The following two tables shall be filled for each application domain.

Supported content data tyre

Attribute�Permissible values��FontAttributes ���FontName���AbsoluteColour���CharacterSet���TransitionEffect���Encoding table

Type of content�Content encoding�Hook values (Integer)��Font encoding format����Palette encoding format����Bitmap encoding format����Text encoding format����EntryField encoding format����HyperText encoding format����Stream encoding format����LineArt encoding format����CursorShape encoding format����InterchangedProgram encoding format����AbsoluteColour encoding format�����•	UserInput registers

	In order to have a working instantiation standard, the application domain shall specify one or more InputEventRegisters. Each register has a number, which is exchanged as one of the parameters of a Scene object and a content (which is not exchanged) consisting of a set of numbers (representing UserInputEventTags) and a name. The name/number pairs bind a specific UserInputEventTag to a logical input event. It is the task of the engine implementor to bind the logical input event to one or more physical input events.

	The following table shall be filled for each application domain.

Register #�UserInputEventTag�Semantics�Comment��(Integer)�…�…�…��

•	EngineEvent

	An MHEG-5 application domain may specify a set of numbers associated with EngineEvent to distinguish between the various external events that lead to the generation of the EngineEvent. In such case, each of these specific EngineEvent shall be mapped to a corresponding Integer in a table such as the one below. Values not reserved by the application domain are free for use by the application programmer.

EngineEvent�EventTag��…�(Integer)��

•	GetEngineSupport

	Application domains may define, in addition to the strings mentioned in this Recommendation, other permissible strings for the GetEngineSupport action. In such case, the application domain shall clearly list these additional strings.

•	Semantic constraints on the MHEG-5 applications

	For each feature defined by a string for the GetEngineSupport action, an application domain may choose to constrain its applications in some way. In such cases a table of constraints shall be provided.

Feature�Constraint��…�…��

•	Protocol mapping and external interaction

	Finally there are the different actions that have an effect that is external to the runtime. These are functions that retrieve objects, manipulate streams and call external function. For interoperability, these actions shall have a common underlying external effect. This usually implies that there is a consistent mapping of these actions on the underlying external communications functions for users of MHEG-5 application domains. The following mappings shall be provided by the application domain.

�

MHEG-5 entity�Mapping needed�Semantics of MHEG-5 structures that needs specification��OpenConnection, CloseConnection�Mapping to connection management (and possibly session management) protocols in the application domain�•	In OpenConnection:

	–	Protocol

	–	Address��RemoteProgram objects�Mapping to RemoteProgram call protocol in the application domain�•	In Call and Fork:

	–	Name

	–	Parameters

	–	ProgramConnectionTag ��Application name space�Mapping to name space of the application domain�•	ObjectReference

•	ContentReference��Application name space in case a TransitionTo action uses the ConnectionTag parameter�Mapping to the name space of the application domain�•	ObjectReference

•	ContentReference��Persistent storage name space�Mapping to the name space of the persistent storage�•	In StorePersistent and 	ReadPersistent:

	–	InFileName, OutFileName��Stream actions�Mapping to the stream interface of the application domain

�•	In Stream:

	–	Speed

	–	CounterPosition ��Stream events�Mapping to stream states and stream events in the application domain

�•	In Stream:

	–	StreamPlaying, StreamStopped�(mapping to application-domain stream state machine)

	–	CounterPosition

	–	StreamEventTag��5	Overview of the MHEG-5 classes

This Recommendation was developed to support the distribution of interactive multimedia applications in a client/server architecture� across platforms of different types and brands. This Recommendation defines a final-form representation for application interchange. The applications consist mainly of declarative code, but provisions for calling procedural code have been made. MHEG-5 applications need only to be authored once and then run on any platform that is compliant to this Recommendation. The developed applications would reside on the server, and as portions of the application are needed, they will be downloaded to the client. In a broadcast environment, this download mechanism could rely, for instance, on cyclic rebroadcasting of all portions of the application. It is the responsibility of the client to have a runtime that interprets the application parts, presents the application to the user, and handles the local interaction with the user.

�Any MHEG-5 application is made up of scenes and objects that are common to all scenes. A scene contains a group of objects used to present information (graphics, sound, video, etc.) along with localized behaviour based on events firing (e.g. the Left button being pushed activates a sound). At most, one scene is active at any one time. Navigation in an application is done by making transitions between scenes.

The interactive system has the ability to display visual objects in a rectangular coordinate system with a fixed size, and to play audible objects. User input devices (e.g. remote control, game controller, etc.) may be used with the runtime to allow interaction with the applications.

The figures in this informative clause present the class diagram of the object classes defined by this Recommendation. Their meaning is explained in Figure 1.

� EMBED Word.Picture.6 ���

Figure 1/T.172 – Legend of Class diagrams

Figure 2 presents an overview of the top layer in the MHEG-5 class hierarchy. The next part of this clause introduces the concepts defined by this Recommendation by explaining the classes shown in Figure 2 and their subclasses.

� EMBED Word.Picture.6 ���

Figure 2/T.172 – Diagram of the top of the class hierarchy

�5.1	Root

This is the abstract base class for all other MHEG-5 classes�. Its main functionality is to provide semantics for generic MHEG-5 behaviour (activation, deactivation, preparation, destruction), and to provide a mechanism for object identification.

5.2	Group

This is an abstract base class for the classes Application and Scene. Its main functionality is that of allowing the grouping of objects of other classes for exchange between the MHEG-5 engine and other entities (similar to a «set» in standard object-oriented terminology). The objects that are grouped by this class are objects of the class Ingredient. Each Ingredient is always contained in exactly one Group. Objects within a Group may be referenced from objects in other Groups under certain conditions (see below).

5.3	Application

Objects of the Application class group objects of the Ingredient class. The Application class also has the semantic constraint that only one Application object may be active� at once, and that no other objects may be active unless an Application object is active.

An idle MHEG-5 engine starts an application by preparing and activating the corresponding Application object. When the Application object becomes active, it automatically runs an OnStartUp action, which can be used to run the first Scene object of the application. Since (exactly) one Application object is active whenever another object is active, the Ingredients contained in the Application object are visible and available to other objects that are active simultaneously. More specifically, any Ingredients contained in an Application object are available to the active Scene. This can be used to describe application-wide behaviour.

5.4	Scene

Objects of the Scene class group objects of the Ingredient class. The purpose of the Scene class is to allow spatially and/or temporally coordinated presentation. Only one Scene object may be active at a time within an MHEG-5 engine. A Scene object must be active in order for any ingredient (be it contained in a Scene or in an Application object) to be displayed.

The Scene class provides the special action TransitionTo, which makes it possible to perform a graphical transition between two scenes. Objects contained in a scene can only be displayed when that scene is active. Object that needs to be displayed across several scenes (e.g. to have uninterrupted presentation over a scene transition) must be contained in an application object. Finally, the Scene class provides information about the coordinate system to be used for visual presentation.

5.5	Ingredient

The Ingredient class is an abstract base class for the classes Link, Program, Palette, Font, CursorShape, Variable and Presentable. The subclasses of the Ingredient class are presented in Figure 3. The main functionality of the Ingredient class is to specify the generic behaviour of objects that can be part of a Scene or an Application object.

�� EMBED Word.Picture.6 ���

Figure 3/T.172 – Diagram of subclasses of the Ingredient class

5.6	Link

Link objects are used to express the behaviour of MHEG-5 applications. A Link object consists of a condition and an Action object. When the condition part evaluates to True, the Link is said to «fire»; this leads to the running of the associated Action object. The condition contains three parts: an event code (identifying which event has to be reacted on), a reference to the object from which the event should emanate, and a value that specifies the required value of the event parameter. In other words, a Link fires only if it is active and only if the right event is generated by the right object and contains the right event parameter. Active Links shall be part of either an active Scene or an active Application.

5.7	Action

An Action object has the functionality of executing, in synchronous sequence, a series of «elementary actions» as the result of a Link firing. An elementary action consists of the object to which the action is to be «targeted» and a list of values representing the parameters of the action. In fact, targeting an elementary action to an object corresponds to calling a method of an object in any ordinary object-oriented programming language. All elementary actions available are listed in clause 49.

The Action class does not inherit from any other MHEG-5 classes. Specifically, it does not inherit from Root, which means that Action objects cannot be addressed as individual entities.

5.8	Program

The Program class provides the functionality of calling a piece of procedural code from within the MHEG-5 context and exchanging parameters with it.

The Program class has the following three subclasses corresponding to the three types of procedural calls that can be made:

•	ResidentProgram

	Procedural call to a piece of code that is specific to the device on which the MHEG-5 engine is running. It can be used, for instance, to call device-specific runtime libraries.

•	RemoteProgram

	Procedural call to a piece of code that is located on a device different than the one where the MHEG-5 engine is running. It can be used, for instance, to implement a remote program call, where the actual body of the program is located at the server in a client-server system.

�•	InterchangedProgram

	Procedural call to a piece of code which is exchanged as a part of an MHEG-5 object. The purpose of this class is to provide functionality needed for exchanging pieces of procedural code, and for calling those pieces of code.

5.9	Palette, Font, and CursorShape

The Palette class provides the possibility to encapsulate the encoded representation of a Colour Look�Up Table (CLUT). The function of a CLUT is to translate a colour index to a true colour value. A Palette may be used, for instance, with bitmaps to specify the colours in which the bitmap is to be rendered.

Similarly, the Font class allows applications to encapsulate the encoded representation of a font. A Font object, when associated with a Text object, is used to render the text of that object.

The CursorShape class, finally, allows applications to encapsulate the encoded representation of the bitmaps, mask, and other data needed to render a free-moving cursor. The free-moving cursor shape can be set and reset using a method of the Scene class.

For Fonts, Palettes and CursorShapes, the actual representation of the objects is not specified by this Recommendation. However, an application domain where fonts and/or CLUTs and/or free-moving cursors are necessary features of applications can specify its encoding and semantics.

5.10	Variable

The Variable class provides the possibility to store and retrieve values. The Variable class has five subclasses corresponding to five different types of variables:

•	BooleanVariable;

•	IntegerVariable;

•	OctetStringVariable;

•	ObjectRefVariable;

•	ContentRefVariable.

Possible uses of Variables include parameter passing to and from Program calls, storage of the state of other MHEG-5 objects, passing indirect parameter values to actions and address indirection, i.e. as pointers to MHEG-5 objects.

5.11	Presentable

The Presentable class is an abstract base class for the MHEG-5 classes Audio, Visible, TokenGroup, and Stream. The subclasses of the Presentable class are presented in Figure 4.

�� EMBED Word.Picture.6 ���

Figure 4/T.172 – Diagram of subclasses of the Presentable class

Objects of the Presentable class represent information that can be directly seen or heard by the user. An important functionality of the Presentable class is to handle the actual encoded representation of the content data. This can be done either by «inclusion» or by «reference». In the former case, the content data is actually transmitted as part of the Presentable object itself; in the latter case, the Presentable object merely provides an external reference to the data.

5.12	TokenGroup

The TokenGroup class provides the facility to navigate a logical token among a set of Visible objects. This structure can be used, for example, to manage the navigation of a «focus» among a set of buttons or other elements of a Scene. Some sets of actions may also be attached to the objects and executed on demand on the Visible object that has the token. The latter feature provides a compact way of expressing behaviour when an element of the group gets or loses the focus.

5.13	ListGroup

The ListGroup class completes the TokenGroup class, providing functionality for selecting objects in a long list. It is best suited to implement a menu for selection, a group of checkboxes, a carousel of bitmaps, a fill-in form, a scrollable list of items, etc. In addition, the ListGroup class provides facilities to dynamically add and remove items to the group.

5.14	Stream

The Stream class defines a multiplex of continuous media for synchronization in time. Audio, Video and RTGraphics objects might be elementary streams of a Stream multiplex: they are intended to be presented at the same time to the user. This structure can be used, for instance, to present video and audio synchronously and to switch from one audio channel to another. The content data of the Stream object is a reference to a real multiplex containing the elementary streams and some additional data for synchronization. During the rendering process, the Stream player generates time�based events and marker-based events that might be used by the MHEG-5 application to trigger some Links.

5.15	Audio

The Audio class implements a sequence of audio data that can be used as an elementary stream of a Stream multiplex.

�5.16	Interactible

The Interactible class is an abstract mix-in class inherited by the MHEG-5 classes HyperText, EntryField, Slider, and Button. Its main functionality is that of allowing the user to interact with objects of its subclasses. These interactions enable the user to change the status and/or appearance of the objects, for instance by entering text in an EntryField object. When interaction is taking place, a certain class of events, called the «UserInput events» are not visible to Link objects, since those events are assumed to be used for the user interaction. The interaction can be aborted by targeting a certain action to the Interactible object.

Another functionality of the Interactible class is the ability to generate events associated with free�moving cursors (CursorEnter, CursorLeave).

5.17	Visible

The Visible class implements the functionality associated with rendering pieces of visual material at some location on the display screen. The subclasses of the Visible class are presented in Figure 5.

� EMBED Word.Picture.6 ���

Figure 5/T.172 – Diagram of subclasses of the Visible class

The subclasses of the Visible class are described below:

•	LineArt

	An object of the LineArt class represents a graphical object with vectorial representation. It can be used, for instance, to present polyline objects, ellipses, bezier curves, etc.

•	DynamicLineArt

	An object of the DynamicLineArt class represents a graphical object that can be dynamically changed. It can be used to draw lines or curves that need to be presented on the fly.

•	Rectangle

•	Bitmap

�•	Video

•	RTGraphics

	An object of the RTGraphics (Real Time Graphics) class represents a stream of graphics objects that are displayed using autonomous placement and synchronization. The RTGraphics stream can be used in conjunction with video and audio, for instance, to create a subtitling application.

•	Text

	Text objects represent text strings. A Text object may be associated with a Font object, which describes the font in which the text should be rendered (in case no font object is given, the default font is assumed). Text has two subclasses, HyperText and EntryField, which implement different types of interactive text.

•	Slider

	A Slider is an Interactible used to let the user set linearly a position within a certain range (given by a minimum and maximum value).

•	Button

	The Button class has two subclasses: PushButton and Hotspot. The PushButton class has one subclass: SwitchButton. Buttons are rectangular areas on the screen with which the user can interact. Each of the three types of buttons has a specific event-generating behaviour attached to it. PushButtons and SwitchButtons are associated with a text item, which represents the text to be displayed in the middle of the button.

6	Structure of this Recommendation

The following clauses of this Recommendation define the semantics of the MHEG-5 classes. This is done on the basis of an abstract syntax notation used to describe the attributes of the exchanged objects. The semantics of the object classes are described in normative text. Clauses 51 to 54 define some normative mechanisms that the MHEG-5 engine is required to implement. Annex A defines the final-form syntax to be used for object exchange. Annex B defines a textual interchange format which maps one�to-one on the final-form binary exchange format.

7	Notations

The following notations are used in the following clauses to describe the MHEG-5 classes defined by this Recommendation.

<Name of the Class>

Description�<Short description of the semantics of the class>��Base class�<Name of the base class>��Subclasses�<List of subclasses, if any>��Status�<Abstract class | Concrete class>��7.1	Attributes

This subclause defines inherited, exchanged and internal attributes for the class.

�7.1.1	Inherited attributes

Requirements and constraints on attributes inherited from the base classes.

Attribute Name�Defined in�Constraints and requirements��<Attribute Name>�<Class name>�<Specific constraints for the current subclass>��7.1.2	Own exchanged attributes

List of exchanged attributes for this class.

<Attribute Name>�<Description of the attribute>

<Type of the attribute>

<Default value>

When the attribute is optional, default value is the value that shall be used when the attribute is not encoded. When the attribute is mandatory, default value is a hint on the most usual value to use.��7.1.3	Own internal attributes

List of internal attributes for this class.

<Attribute Name>�<Description of the attribute>

<Initial value>��7.2	Events

These are the events that can be generated from objects of this class. They are used to express Link conditions that shall be checked when such an event is generated.

<Event Name>�<Description of the event>

<Context of occurrence of the event>

<Description of the event data associated with the event, if any>��7.3	Internal behaviours

The following internal behaviours are defined for most MHEG-5 classes:

•	Preparation;

•	Destruction;

•	Activation;

•	Deactivation.

In addition, the Interaction internal behaviour is defined for some MHEG-5 classes. These behaviours correspond to semantic requirements for operations internal to the MHEG-5 engine, similar to the notion of «private» methods of a class in object-oriented terminology. They are not encoded nor transmitted within an Application description.

When a behaviour is not described for an MHEG-5 class, the semantics of the behaviour for its base class applies.

<Behaviour name>�<Semantics of the behaviour within the context of the current class>���7.4	Effect of MHEG-5 actions

Define the semantics and syntax of MHEG-5 actions that may be targeted to the current MHEG-5 class.

<Action Name>�<Semantics of the action within the context of the current class>��7.5	Formal description

Description of an encoded MHEG-5 object of the current class in Extended Backus-Naur Form (EBNF):

Class Name�-->�First part,����Second part��First part�-->�Subpart | Alternative��Second part�-->�Terminal (constant or type)��8	Root Class

Description:�Root class of all MHEG-5 classes��Base class:�None��Subclasses:�Group, Ingredient��Status:�Abstract class��8.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

8.1.1	Inherited attributes

This class has no inherited attributes.

8.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

ObjectIdentifier�This is a mandatory data structure, which consists of the following parts:

•	Optional GroupIdentifier.

Unique identifier of a group of MHEG-5 objects.

–	Optional OctetString.

–	Default value: The GroupIdentifier of the Group within which the object is encoded.���	The actual structure of this parameter is not defined by this Recommendation. However, the application domain shall define such a structure. See clause 51.���•	ObjectNumber.

Unique identifier of any MHEG-5 object within a group.���–	Integer.���8.1.3	Own internal MHEG-5 attributes

This class defines the following internal attributes:

AvailabilityStatus�State of availability of the object.

When the AvailabilityStatus of the object is True, the object is available; this means that the Preparation behaviour of the object has ended successfully.

When the AvailabilityStatus of the object is False, the object is non-available; this means that the Preparation behaviour has not ended successfully or has not been invoked, or that the Destruction behaviour has been applied successfully.

•	Boolean value.

•	Default value: False.��RunningStatus�State of activity of the object.

When the RunningStatus of the object is True, the object is active; this means that the Activation behaviour of the object has ended successfully.

When the RunningStatus of the object is False, the object is inactive; this means that the Activation behaviour has not successfully ended or has not been invoked, or that the Deactivation behaviour has been applied successfully.

•	Boolean value.

•	Default value: False.��8.2	Events

This class defines the following events:

IsAvailable�This event is generated when the AvailabilityStatus attribute changes from False to True as a result of the Preparation behaviour ending successfully for the object.

NOTE – The purpose of this event is to indicate to the MHEG-5 engine that the object is available and can be activated.

•	No associated data.

��ContentAvailable�This event is generated when the object and its content are available in an optimal state to the MHEG-5 engine. Its purpose is to indicate to the MHEG-5 engine that the Activation behaviour can happen in a timely manner. This event is generated asynchronously with the Preparation behaviour for the object.

NOTE – Each MHEG-5 engine may choose to give a different meaning to that degree of content availability. This Recommendation does not specify any meaning or time requirement in this matter.

•	No associated data.

���

IsDeleted�This event is generated when the AvailabilityStatus attribute changes from True to False as a result of the Destruction behaviour ending successfully for the object.

•	No associated data.

��IsRunning�This event is generated when the RunningStatus attribute changes from False to True as a result of the Activation behaviour ending successfully for the object.

•	No associated data.

��IsStopped�This event is generated when the RunningStatus attribute changes from True to False as a result of the Deactivation behaviour ending successfully for the object.

•	No associated data.��8.3	Internal behaviours

This class defines the following internal behaviours:

Preparation�This behaviour has the basic semantics of allocating all requested resources in order to handle or to present this object.

Apply the following sequence of actions:

1)	If the AvailabilityStatus attribute of the object is True, abort the behaviour. Otherwise:

2)	Retrieve the object from an entity outside the engine.

3)	Set each internal attribute of the object to its initial value.

4)	Set the AvailabilityStatus attribute to True.

5)	Generate an IsAvailable event.

The above steps are executed synchronously. The following step is asynchronous.

6)	Generate a ContentAvailable event.

��Destruction�This behaviour has the basic semantics of asking the MHEG-5 engine to delete the object.

Apply the following sequence of actions:

1)	If the AvailabilityStatus attribute of the object is False, abort the behaviour. Otherwise:

2)	If the RunningStatus attribute of the object is True:

a)	apply the Deactivation behaviour;

b)	wait for an IsStopped event from the object.

This shall all be done synchronously.���

�3)	If the RunningStatus attribute of the object is False, execute the following actions synchronously.

4)	If the GroupCachePriority attribute of the object itself or of the group this object belongs to is set to 0, the MHEG-5 engine shall free all resources allocated to the object.

Note that GroupCachePriority is defined in Group class.

5)	If the GroupCachePriority attribute of the object itself or of the group this object belongs to is different from 0, the MHEG-5 engine may decide to either actually free all resources allocated to the object or to cache it.

6)	Generate an IsDeleted event.

Note that the IsDeleted event shall be generated whether the resources mentioned above were actually freed or not; the object is deleted in the sense defined by this Recommendation, even if some associated resources are not.��Activation�This behaviour has the basic semantics of immediately making this object active.

Apply the following sequence of actions:

1)	If the RunningStatus attribute of the object is True, abort the behaviour. Otherwise:

2)	If the AvailabilityStatus attribute of the object is False:

a)	apply the Preparation behaviour to the object;

b)	wait for an IsAvailable event from the object.

These steps are executed synchronously, meaning that the engine will not perform other actions until the Preparation behaviour has ended.

NOTE 1 – The effect of the Activation behaviour (e.g. the display of a bitmap) will continue even after the behaviour itself has returned.

NOTE 2 – The generation of an IsRunning event and the modification of the RunningStatus internal attribute are parts of the Activation behaviour of subclasses of the Root class.

��Deactivation�This behaviour has the basic semantics of notifying the MHEG-5 engine to deactivate this object immediately.

Apply the following sequence of actions:

1)	If the RunningStatus attribute of the object is False, abort the behaviour. Otherwise:

2)	Set the RunningStatus attribute of the object to False.

3)	Generate an IsStopped event.���8.4	Effect of MHEG-5 actions

This class defines the following applicable MHEG-5 actions:

�GetAvailabilityStatus�(AvailabilityStatusVar)�Set the Variable referenced by AvailabilityStatusVar to the value of the AvailabilityStatus attribute.

NOTE – A GetAvailabilityStatus action targeted to an object inexistant in the MHEG-5 engine is not an error; the result is False.

Provision of use:

•	AvailabilityStatusVar shall refer to an active BooleanVariable object.���Syntax description:�����GetAvailabilityStatus�-->�Target,�����AvailabilityStatusVar���Target�-->�GenericObjectReference���AvailabilityStatusVar�-->�ObjectReference�����GetRunningStatus�(RunningStatusVar)�Set the Variable referenced by RunningStatusVar to the value of the RunningStatus attribute.

Provisions of use:

•	The Target object shall be available.

•	RunningStatusVar shall refer to an active BooleanVariable object.

Syntax description:���GetRunningStatus�-->�Target,�����RunningStatusVar���Target�-->�GenericObjectReference���RunningStatusVar�-->�ObjectReference��8.5	Formal description

Root Class�-->�ObjectIdentifier��ObjectIdentifier�-->�ObjectReference��9	Group Class

Description:�Defines the structure and behaviour of objects used as composition of Ingredients��Base class:�Root��Subclasses:�Scene, Application��Status:�Abstract class���9.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

9.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ObjectIdentifier�Root�This attribute is mandatory for this class.

The Group Identifier part of this attribute is mandatory and shall be unique within the name space of the application domain.

The Object Number part of this attribute shall be set to zero.��9.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

StandardIdentifier�This is an optional sequence of two Integers. When encoded:

•	the first Integer shall always be set to 2, signifying «Joint ISO ITU»;

•	the second Integer shall always be set to 19, signifying MHEG.

��StandardVersion�This is a single optional Integer. It defines the version of this Recommendation to which the Group objects, and all its Items, conform.

•	Optional Integer. If encoded, its value shall be 1.

•	Default value: 1.

��ObjectInformation�This is an optional OctetString. When encoded, it shall hold information about the objects encoded in this Group. Such information may comprise information about object Name, Owner, Version, Date, Keywords, Copyright, License, and Comments.

��OnStartUp�Set of elementary actions to run at the end of the Activation behaviour for the Group.

•	Optional inclusion of an Action object.

•	Default value: None.

��OnCloseDown�Set of elementary actions to run at the beginning of the Deactivation behaviour for the Group.

•	Optional inclusion of an Action object.

•	Default value: None.

���

OriginalGroup-CachePriority�Hint to the MHEG-5 engine regarding the relevance of caching this Group of Ingredients when it is destroyed.

Value of the GroupCachePriority when the Group is prepared.

•	Optional Integer within the range [0, 255].

•	Default value: 127.

•	Specific value: 0 means cache is not allowed for this Group and its Ingredients.

NOTE – As specified in 4.2.2, caching of any kind is an optional feature of an MHEG-5 engine.

��Items�Set of Ingredient objects that belong to the Group. When the Group contains no Ingredients, this attribute shall not be encoded. When this attribute is encoded, it shall contain at least one Ingredient.

•	Optional Attribute.

•	Sequence of inclusions of Ingredient objects.

•	Default value: None.

��9.1.3	Own internal attributes

This class defines the following internal attribute:

GroupCachePriority�Hint to the MHEG-5 engine regarding the relevance of caching this Group of Ingredients when it is destroyed.

The GroupCachePriority may be compared with the GroupCachePriority of other Group objects to determine which of a number of groups has the highest likelihood of being required again by the application, once it has been destroyed. A higher value indicates a higher level of priority. It is the responsibility of the application designer to keep these numbers to a ���consistent range. The MHEG-5 engine is recommended to cache objects with higher priority in preference to objects with lower priority.

•	Optional Integer within the range [0, 255].

•	Initial value: Value of the OriginalGroupCachePriority attribute.

•	Specific value: 0 means cache is not allowed for this Group and its Ingredients.��9.2	Events

This class has the same events as its base class, with identical semantics.

�9.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Preparation�1)	Apply the Preparation behaviour to all Ingredients of the Group that have the InitiallyActive attribute set to True and to all Programs of the Group that have the InitiallyAvailable attribute set to True in the order that they are listed in the Items attribute.

2)	Apply the Preparation behaviour as inherited from the base class.

��Destruction�1)	Apply the Destruction behaviour to all Ingredients of the Group in the reverse order that they are listed in the Items attribute.

2)	Apply the Destruction behaviour as inherited from the base class.

��Activation�1)	Apply the Activation behaviour as inherited from the base class.

2)	Run the action contained in the OnStartUp attribute.

3)	Apply the Activation behaviour to all Ingredients of the Group that have the InitiallyActive attribute set to True, in the order they are listed in the Items attribute.

4)	Set the RunningStatus attribute of the Group object to True.

5)	Generate an IsRunning event.

��Deactivation�If group is not active, ignore behaviour. If group is active, do the following three steps:

1)	Run the action contained in the OnCloseDown attribute.

2)	Apply the Deactivation behaviour to all active Ingredients of the Group, in the reverse order they are listed in the Items attribute.

3)	Apply the Deactivation behaviour as inherited from the base class.��9.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 action is defined:

SetCachePriority�(NewCachePriority)�Set the GroupCachePriority attribute to NewCachePriority.

Provisions of use:

•	The Target object shall be available.

•	NewCachePriority shall be set within the range [0, 255].���Syntax description:�����SetCachePriority�-->�Target,�����NewCachePriority���Target�-->�GenericObjectReference���NewCachePriority�-->�GenericInteger���9.5	Formal description

Group Class�-->�Root Class,����StandardIdentifier?,����StandardVersion?,����ObjectInformation?,����OnStartUp?,����OnCloseDown?,����OriginalGroupCachePriority?,����Items?��StandardIdentifier�-->�Joint ISO ITU (2), MHEG (19)��StandardVersion�-->�INTEGER��ObjectInformation�-->�OctetString��OnStartUp�-->�Action Class��OnCloseDown�-->�Action Class��OriginalGroupCachePriority�-->�INTEGER��Items�-->�Item+��Item�-->�ResidentProgram Class |����RemoteProgram Class |����InterchangedProgram Class |����Palette Class |����Font Class |����CursorShape Class |����BooleanVariable Class |����IntegerVariable Class |����OctetStringVariable Class |����ObjectRefVariable Class |����ContentRefVariable Class |����Link Class |����Stream Class |�����Bitmap Class |����LineArt Class |����DynamicLineArt Class |����Rectangle Class |����Hotspot Class |����SwitchButton Class |����PushButton Class |����Text Class |����EntryField Class |����HyperText Class |����Slider Class |����TokenGroup Class |����ListGroup Class���10	Application Class

Description:�Defines a set of Ingredient objects, which are shared within an application scope��Base class:�Group��Subclasses:�None��Status:�Concrete class��10.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

10.1.1	Inherited attributes

This class has all the attributes of its base class, with identical semantics.

10.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

OnSpawnCloseDown�Action object to be executed when the Application is closed by opening another Application via the Spawn action. It may be useful for instance in order to store information that will be used when restarting this Application.

OnSpawnCloseDown may be invoked only by the Spawn action (see Spawn).

•	Optional inclusion of an Action object.

•	Default value: None.

��OnRestart�Action object to be executed when the Application is restarted. This may be useful, for instance, in order to retrieve information that was stored by OnSpawnCloseDown.

OnRestart may be invoked only by the Quit action (see Quit).

•	Optional inclusion of an Action object.

•	Default value: None.

��DefaultAttributes�Defines default attributes Application-wide that shall be used as default values when a corresponding Ingredient attribute is not specified. The following attribute defaults can be set:

��CharacterSet�Default character set, or set of character sets, for text rendering throughout the application, except when otherwise specified. This Integer shall be encoded with a value representing the set. The application domain shall define the range of CharacterSet and its semantics.���

�NOTE – The CharacterSet attribute of Application provides the initial character set for all objects containing text in the Application that do not specify it.

•	Optional Integer.

•	Default value: None.

��BackgroundColour�Default colour to be used to render the background of a text object. This attribute is interpreted as a zero-based index in the colour look-up table defined by the PaletteRef attribute, or as a direct colour value, depending on the attribute type.���•	Optional Integer or OctetString. An Integer will be interpreted as an index in a Palette; an OctetString will be interpreted as a direct colour value.

•	Default value: «transparent».

��TextColour�Default colour to be used to render the foreground of a text object. This attribute is interpreted as a zero-based index in the colour look-up table defined by the PaletteRef attribute, or as a direct colour value, depending on the attribute type.

•	Optional Integer or OctetString. An Integer will be interpreted as an index in a Palette; an OctetString will be interpreted as a direct colour value.

•	Default value: Any colour.

��Font�Default font to use when presenting a Text object.

The Font attribute represents either a name for a font (which is resident in the MHEG-5 engine) or a reference to a Font object.

When no font reference is encoded in Application, the Text object is presented using a default font of the MHEG-5 engine.

•	Optional attribute.

•	OctetString representing a FontName, or reference to a Font object.

•	Default value: Default font.

��FontAttributes�Default Font attributes such as style, character size, text colour and background colour.

The exact encoding format of the FontAttributes attribute is related to the value of the type of Font object mentioned by the Font attribute.

•	Optional OctetString.

•	Default value: No specific attribute set.

���

BitmapContentHook�Default hook value for all Bitmap objects.

•	Optional Integer.

•	Default value: None.

��StreamContentHook�Default hook value for all Stream objects.

•	Optional Integer.

•	Default value: None.

��TextContentHook�Default hook value for all Text objects.

•	Optional Integer.

•	Default value: None.

��LineArtContentHook�Default hook value for all LineArt objects.

•	Optional Integer.

•	Default value: None.

��Interchanged�ProgramContentHook�Default hook value for all InterchangedProgram objects.

•	Optional Integer.

•	Default value: None.

��ButtonRefColour�Default ButtonColour colour for Button rendering.

•	Optional Integer or OctetString.

•	Default value: None.

��HighlightRefColour�Default HighlightRefColour for Interactibles.

•	Optional Integer or OctetString.

•	Default value: None.

��SliderRefColour�Default SliderColour colour Slider rendering.

•	Optional Integer or OctetString.

•	Default value: None.

���10.1.3	Own internal attributes

This class defines the following additional internal attributes:

LockCount�Specify whether or not the display screen is in a frozen state.

When this attribute is positive and different from zero, the display shall not reflect any changes made to Visible objects that would normally result in a change in their rendering. However, all those changes shall be reflected at once as soon as the screen is unfrozen. The latter is signalled by the LockCount attribute being set to 0.

Audio objects (of a Stream multiplex) will continue to play through a LockScreen action, i.e. they will continue to be heard.

Visible objects that are part of a Stream multiplex shall continue to be played, but any other changes to these objects (e.g. position, volume, etc.) shall not be reflected until the screen is unfrozen; by continue to play is meant that they shall continue to move their CounterPosition attribute when the screen is locked, but, the updating of the graphical presentation of these objects during locked screen is optional. On some engines their physical rendering continues running, on some others the image is stopped until the screen is unlocked.

When the screen unlocks, the rendering of the Visible objects shall be compliant with the value of the CounterPosition attribute.

•	Integer greater than or equal to zero.

•	Initial value: 0.�����DisplayStack�Ordered list of references to Visible objects indicating how Visibles of the application are organised in graphics layers.

Visibles at the bottom of the DisplayStack are displayed in the background of the screen and Visibles at the top of the DisplayStack are displayed in the foreground of the screen.

Note that the DisplayStack may contain references to inactive Visible objects. In this case, inactive Visible objects simply do not appear on the screen but they remain as valid elements of the DisplayStack.

•	Ordered list of ObjectReferences to Visible objects.

•	Initial value: Empty list.��10.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following event is defined:

EngineEvent�This event is generated when a particular event has occurred in the environment of the MHEG-5 engine. This Recommendation does not specify any of these events; the application domain may specify the semantics of each of these events and the value of their associated data.

•	Associated data: EventTag – Integer.���10.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Deactivation�Execute the following sequence of actions:

1)	Apply the CloseConnection action to all opened auxiliary connections.

2)	Apply the Deactivation behaviour as inherited from the base class.��10.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

StorePersistent�(StoreSucceeded, InVariables, OutFileName)�Request the MHEG-5 engine to save data in such a way that it may later be retrieved by the ReadPersistent action.

Data to be saved is passed through a set of Variables referenced by the InVariables parameter. These variables may contain Booleans, Integers, OctetStrings, ObjectReferences and ContentReferences.

The data is saved in a file data structure. The OutFileName is another parameter of the StorePersistent action. This Recommendation does not define the nature, structure, ownership, protection or restriction of the file space. However, StorePersistent and ReadPersistent actions shall use the same file name space.���The effect of the StorePersistent action is synchronous. On the successful completion of the StorePersistent action, the Variable referenced by StoreSucceeded shall be set to True, otherwise to False.

Example: Consider the following elementary action included as part of the OnSpawnCloseDown attribute of an Application:

:StorePersistent (("myApp" 0) ("myApp" 1) (("scene1" 1) ("scene1" 2)) "myfile.txt") ("myApp" 0) is the ObjectIdentifier of the current Application. ("scene1" 1) and ("scene1" 2) are ObjectIdentifiers of variables that hold information relative to the current Application, e.g. user information. These data will be stored in file named "myfile.txt". The variable ("myApp" 1) refers to a Boolean indicating whether the elementary action succeeded or not.

Data may be recovered at the beginning or restart of this Application (or of another one) to avoid asking the user for the same information twice.

Provisions of use:

•	The Target object shall be the active Application object.

•	StoreSucceeded shall refer to an active BooleanVariable object.

•	InVariables shall be set to a non-empty list of references to active Variable objects of any type.���

�Syntax description:���StorePersistent�-->�Target,�����StoreSucceeded,�����InVariables,�����OutFileName���Target�-->�GenericObjectReference���StoreSucceeded�-->�ObjectReference���InVariables�-->�ObjectReference+���OutFileName�-->�GenericOctetString�����ReadPersistent�(ReadSucceeded, OutVariables, InFileName)�Request the MHEG-5 engine to read data that has been saved by the StorePersistent action.

Data to be read is recovered through a set of Variable objects, referenced by the parameter OutVariables.

The data has been stored in a file data structure. The InFileName is another parameter of the ReadPersistent action. This Recommendation does not define nature, structure, ownership, protection or restriction of the file space. However, StorePersistent and ReadPersistent actions shall use the same file name space.

The effect of the ReadPersistent action is synchronous. At successful completion of the ReadPersistent action, the Variable referenced by ReadSucceeded shall be set to True, otherwise to False.

Example: Consider the following elementary action as part of the OnRestart attribute of the Application:���:ReadPersistent (("myApp" 0) ("myApp" 1) (("scene1" 1) ("scene1" 2)) "myfile.txt")

The content of the variables indicated by ("scene1" 1) and ("scene1" 2) will be set to the values read from the file "myfile.txt" when the Application is launched.

Provisions of use:

•	The Target object shall be the active Application object.

•	ReadSucceeded shall refer to an active BooleanVariable object.

•	OutVariables shall be set to a non-empty list of references to active Variable objects.���

�Syntax description:���ReadPersistent�-->�Target,�����ReadSucceeded,�����OutVariables,�����InFileName���Target�-->�GenericObjectReference���ReadSucceeded,�-->�ObjectReference���OutVariables�-->�ObjectReference+���InFileName�-->�GenericOctetString�����Launch�Activate a new application by flushing the currently active one, if any.

Execute synchronously the following sequence of actions:

1)	Apply the Destruction behaviour of the currently active Scene object, if any.

2)	Apply the Destruction behaviour of the currently active Application object, if any.���3)	Apply the Activation behaviour of the Application object to which the Launch action was targeted.

NOTE – Any events that are generated during the execution of these steps are queued and dealt with only after the entire sequence has ended.

Provision of use:

•	The Target object shall be a non-available Application object.���Syntax description:���Launch�-->�Target���Target�-->�GenericObjectReference�������Spawn�Activate a new application in such a way that the current application is restarted when the new application quits.

Execute synchronously the following sequence of actions:

1)	Execute the OnSpawnCloseDown Action of the currently active Application object.

2)	Store the GroupIdentifier of the currently active Application on the application identifier stack, if any.

3)	Execute the effect of the Launch action as described above.

The application identifier stack is an optional feature of an MHEG-5 engine. If it is not implemented, or if the application identifier stack is full, this action shall be implemented as the Launch action.

���

�Provision of use:

•	The Target object shall be an Application object that is not currently active while there is currently an active Application object.

Syntax description:���Spawn�-->�Target���Target�-->�GenericObjectReference�����Quit�Close an application and restart the previous application.

Execute synchronously the following sequence of actions:

1)	Apply the Destruction behaviour of the currently active Scene object, if any.

2)	Apply the Destruction behaviour of the target Application object.

3)	If the MHEG-5 engine has not implemented an application identifier stack, or if the application identifier stack is empty, the MHEG-5 engine shall then return to an idle state. In all other cases, the following steps shall be performed:

4)	Apply the Activation behaviour to the Application object whose Group Identifier is on the top of the application identifier stack. Note that this includes executing the OnStartUp Action of that object.���5)	Remove the top entry from the application identifier stack.

6)	Execute the OnRestart Action of the newly activated Application object.

Provision of use:

•	The Target object shall be the currently active Application object.

Syntax description:���Quit�-->�Target���Target�-->�GenericObjectReference�����LockScreen�Freeze the display screen and prevent from reflecting changes to Visible objects.

Execute synchronously the following sequence of actions:

1)	Increment the internal attribute LockCount by 1.

2)	If the LockCount attribute is now a strictly positive value, lock the display screen.���

�Provision of use:

•	The Target object shall be the active Application object.���Syntax description:���LockScreen�-->�Target���Target�-->�GenericObjectReference�����UnlockScreen�This action may refresh the display screen and reflect at once all changes to Visible objects.

Execute synchronously the following sequence of actions:

1)	Decrement the internal attribute LockCount by 1. If the result is less than zero, set the LockCount attribute to 0.

2)	If the LockCount attribute is equal to 0, refresh the display screen.

Provision of use:

•	The Target object shall be the active Application object.���Syntax description:���UnlockScreen�-->�Target���Target�-->�GenericObjectReference�����OpenConnection�(OpenSucceeded, Protocol, Address, ConnectionTag)�Attempt to open a connection with an entity outside the MHEG-5 engine.

The OpenConnection action has the following parameters:���OpenSucceeded�If the OpenConnection action terminates successfully, the Variable referenced by OpenSucceeded shall be set to True, otherwise to False.���Protocol�Identifier of the protocol to be used when establishing the connection.���Address�Address of the counterpart with whom the connection should be made. The coding of this parameter depends on the value of the Protocol.���ConnectionTag�Integer used to reference the connection within the application.���Provisions of use:

•	The Target object shall be the active Application object.

•	OpenSucceeded shall refer to an active BooleanVariable object.���

�Syntax description:���OpenConnection�-->�Target,�����OpenSucceeded,�����Protocol,�����Address,�����ConnectionTag���Target�-->�GenericObjectReference���OpenSucceeded�-->�ObjectReference���Protocol�-->�GenericOctetString���Address�-->�GenericOctetString���ConnectionTag�-->�GenericInteger�����CloseConnection�(ConnectionTag)�Attempt to close a connection with an entity outside the MHEG-5 engine.

The CloseConnection action has the following parameters:���ConnectionTag�Integer referencing a connection created by the OpenConnection action.���Provisions of use:

•	The Target object shall be the active Application object.

•	If the connection referenced by ConnectionTag is not properly established, the CloseConnection action is ignored.���Syntax description:���CloseConnection�-->�Target,�����ConnectionTag���Target�-->�GenericObjectReference���ConnectionTag�-->�GenericInteger�����GetEngineSupport�(Feature, Answer)�Return a Boolean that indicates if the MHEG-5 engine implements the specific option or set of options of this Recommendation. The result of this action is returned in a BooleanVariable referenced by the Answer parameter and may be used to adapt the behaviour of the application to the engine's capacities.

Feature is a string encoded by ISO/IEC 646 and describing the option or set of options. Strings allowed are defined below; additional strings may be defined by the application domain. These strings are case sensitive, and integers are to be substituted to the symbols N, W, H, X or Y in parenthesis.

The answer to each of these strings shall be True or False.

–	AncillaryConnections

	asks whether engine supports ancillary point-to-point connections. These connections deal with the actions OpenConnection and CloseConnection, and the attribute ConnectionTag in various elementary actions.���

�–	ApplicationStacking

	asks whether engine provides support for the Spawn action of the Application class.

–	Cloning

	asks whether engine supports the Clone action.

–	FreeMovingCursor

	asks whether engine provides support for the class CursorShape, for the events CursorEnter and CursorLeave, and for the actions GetCursorPosition, SetCursorPosition, and SetCursorShape.

–	MultipleAudioStreams(N)

	asks whether engine supports at least N simultaneous Audio streams.

–	MultipleRTGraphicsStreams(N)

	asks whether engine supports at least N simultaneous RTGraphics streams.

–	MultipleVideoStreams(N)

	asks whether engine supports at least N simultaneous Video streams.

–	OverlappingVisibles(N)

	asks whether engine supports at least N overlapping Visibles.���–	Scaling

	asks whether engine supports ScaleBitmap and ScaleVideo actions.

–	SceneAspectRatio(W,H)

	asks whether engine supports a given aspect ratio. W & H are two integers, W/H is the width/height aspect ratio.

–	SceneCoordinateSystem(X,Y)

	asks whether engine supports a given coordinate system. X & Y are two integers defining the coordinate system.

–	TrickModes

	asks whether engine supports trick modes for Streams.

Provisions of use:

•	The GetEngineSupport action shall be targeted only to the active Application object.

•	Answer shall refer to an active BooleanVariable object.���Syntax description:���GetEngineSupport�-->�Target,����-->�Feature,�����Answer���Target�-->�GenericObjectReference���Feature�-->�GenericOctetString���Answer�-->�ObjectReference���10.5	Formal description

Application Class�-->�Group Class,����OnSpawnCloseDown?,����OnRestart?����DefaultAttributes?��OnSpawnCloseDown�-->�Action Class��OnRestart�-->�Action Class��DefaultAttributes�-->�DefaultAttribute+��DefaultAttribute�-->�CharacterSet | BackgroundColour | TextColour | Font | FontAttributes | BitmapContentHook | InterchangedProgramContentHook | StreamContentHook | �TextContentHook | LineArtContentHook | ButtonRefColour | HighlightRefColour | SliderRefColour��CharacterSet�-->�INTEGER��BackgroundColour�-->�Colour��TextColour�-->�Colour ��Font�-->�OctetString | ObjectReference��FontAttributes�-->�OctetString��BitmapContentHook�-->�INTEGER��StreamContentHook�-->�INTEGER��TextContentHook�-->�INTEGER���LineArtContentHook�-->�INTEGER��Interchanged�Program�ContentHook�-->�INTEGER��ButtonRefColour�-->�Colour��HighlightRefColour�-->�Colour��SliderRefColour�-->�Colour��11	Scene Class

Description:�Defines a set of Ingredient objects to be activated together��Base class:�Group��Subclasses:�None��Status:�Concrete class��11.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

11.1.1	Inherited attributes

This class has all the attributes of its base class, with identical semantics.

�11.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

InputEventRegister�Register of permissible UserInput events for this Scene.

While this Scene is active, the MHEG-5 engine shall generate only UserInput events that have an associated data consistent with the content of this InputEventRegister.

The contents of InputEventRegisters is not defined by this Recommendation.

•	Integer identifying an InputEventRegister.

Example: One could define two InputEventRegisters: one dedicated to moving pointer input events (MouseClick, etc.) and another one dedicated to remote control input events (Up, Down, Left, Right, Enter, Quit, etc.). Knowing which type of input events are expected by the scene will allow the MHEG-5 engine to use the physical user devices to generate such events.

��SceneCoordinate�System�Size of the coordinate system of this Scene.

This attribute is expressed in numbers of rows and columns.

•	Two Integers, expressing x-scene and y-scene sizes.

��AspectRatio�Original aspect ratio of the Scene. This attribute is expressed by a width/height ratio.

•	Optional rational number.

•	Default value: 4/3.

��MovingCursor�Indicate whether the Scene is expecting a free-moving cursor.

Support by the MHEG-5 engine for free-moving cursors is optional. However, an application domain of MHEG-5 may declare such support to be mandatory. An engine that does not support free-moving cursors shall disregard this attribute. An engine that does support free-moving cursors shall act in the following way:

•	When this attribute is False, the engine shall not display a cursor on the screen.

•	When this attribute is True, the engine shall display a cursor on the screen. The user shall be able to move this cursor to all positions within the Scene coordinate space. When the cursor enters (or leaves) the bounding box of an Interactible object, a CursorEnter (CursorLeave) event shall be generated for that Interactible. The engine shall support the SetCursorPosition and GetCursorPosition actions.

���

�The following applies to this attribute in general:

•	Optional Boolean.

•	Default value: False.

��NextScenes�An optional list of OctetStrings, which shall be interpreted as GroupIdentifiers of Scene objects that might be presented after this one, along with a weight factor measuring the likelihood that these scenes are actually presented. The weight factor shall be an Integer in the range [0, 255] with 255 indicating the highest likelihood. It may be used by the MHEG-5 engine to resolve caching or pre-loading conflicts.��11.1.3	Own internal attributes

This class defines the following additional internal attribute:

Timers�List of timers representing the temporal positions where the Scene shall receive TimerFired events.

Each timer has a unique identity number within the Timers list and a temporal position expressed in milliseconds. The temporal position is measured from the time origin of the timer. A timer shall be created by executing the SetTimer action on the active Scene. The time origin of the timer is by default the position in time where the SetTimer action, that created this timer, is executed; however, if the AbsoluteTime Boolean is encoded and set to True, the time origin of the timer is the position in time where the IsRunning event of the scene is generated.���•	Sequence of the following data structures:

–	Timer identifier: Integer

–	Timer position: Integer

–	AbsoluteTime: Optional Boolean, default: False.

•	Initial value: Empty sequence.��11.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following events are defined:

UserInput�This event shall be generated by the MHEG-5 engine to indicate that user input has occurred.

•	Associated data: UserInputEventTag – Integer. The value of the Associated Data shall be consistent with the content of the InputEventRegister attribute.

��TimerFired�This event is generated when a timer has fired.

•	Associated data: TimerIdentifier – Integer.���11.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

11.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

TransitionTo�(ConnectionTag, TransitionEffect)�Check that target scene is different from active scene. If it is not, ignore action; if it is, remove the active Scene from the screen and replace it with the target Scene as follows.

Execute synchronously the following sequence of actions:

1)	Apply the Deactivation behaviour to all active Ingredient objects of the currently active Application object that have the Shared parameter set to False in the reverse order that they are listed in the Items attribute of the application object.

2)	Apply the Deactivation and Destruction behaviours to the Scene object currently active, if any. (This starts the transition effect.)

3)	Apply the Preparation behaviour to the Scene object to which the TransitionTo action was targeted.

4)	Apply the Activation behaviour to the Scene object to which the TransitionTo action was targeted. (This stops the transition effect.) The timeline for the new scene starts after generation of the IsRunning event.���This action has an optional parameter called ConnectionTag. If this parameter is not encoded, the Scene reference shall be resolved within the name space of the active Application object.

If the ConnectionTag parameter is encoded, the reference to the target Scene and all ContentReferences made from the target Scene shall be resolved within a name space that is used for communication over a communication link with the tag ConnectionTag (see the action OpenConnection in the Application class).

In addition, this action has a TransitionEffect parameter, which determines what type of visual transition effect to be implemented when performing the TransitionTo action. Implementing any transition effect is optional for the MHEG-5 engine. The encoding of the TransitionEffect attribute has to be specified by the application domain.

NOTE – For some transition effects, the engine may be required to handle the Destruction behaviour of Visibles differently from other deactivation (not introduced by TransitionTo). For example, the visual representation of the current scene may be saved in the graphical subsystem for a wipe or push effect, where the first scene is smoothly replaced by the second.

Provision of use:

•	The Target object shall be a non-available Scene object.���

�Syntax description:�����TransitionTo�-->�Target,�����ConnectionTag?,�����TransitionEffect?���Target�-->�GenericObjectReference���ConnectionTag�-->�GenericInteger���TransitionEffect�-->�GenericInteger�����SetTimer�(TimerId, TimerValue, AbsoluteTime)�Update the list of timers of the Scene.

Execute the following sequence of actions:

1)	Update the Timers internal attribute of the Scene, according to the following rules:

a)	If TimerId is the identifier of an existing Timer in the Scene, the new TimerValue replaces the previous one. The parameter AbsoluteTime is ignored; in other words, an absolute Timer cannot be replaced by a Timer relative to the Scene.

b)	If there is no Timer with identifier TimerId in the Scene, insert a new Timer with identifier TimerId and values TimerValue and AbsoluteTime in the Scene. If AbsoluteTime is not encoded, it is set to False by default.

c)	If TimerValue is not encoded and there is a Timer with identifier TimerId in the Scene, remove this Timer from the Timers list.���d)	If TimerValue is not encoded and there is no Timer with identifier TimerId in the Timers list, discard this action.

2)	The active Scene shall receive TimerFired events according to the new value of the Timers list.

If AbsoluteTime is set to True, the TimerValue parameter of this action shall be interpreted as a time offset from the time when the Scene is active. Otherwise, the TimerValue parameter of this action shall be interpreted as a time offset from the time when the action is invoked. In both cases, it is measured in milliseconds.

If the TimerValue parameter is zero and AbsoluteTime is False, the Timer shall be fired immediately.

Removing or changing a Timer does not suppress pending events from the former Timer.���

�Provision of use:

•	The Target object shall be the active Scene object.

Syntax description:���SetTimer�-->�Target,�����TimerId,�����TimerValue?,�����AbsoluteTime?���Target�-->�GenericObjectReference���TimerId�-->�GenericInteger���TimerValue�-->�GenericInteger���AbsoluteTime�-->�GenericBoolean�����SendEvent�(EmulatedEvent�Source, EmulatedEvent�Type, EmulatedEvent�Data)�Force the occurrence of an event.

Execute the following sequence of actions:

1)	Generate an event corresponding to EmulatedEventType, EmulatedEventSource and EmulatedEventData as if it has been generated in the normal way.

2)	Store this event in the synchronous or asynchronous event queue, according to EmulatedEventType.

Provisions of use:

•	The Target object shall be the active Scene object.

•	EmulatedEventSource shall refer to an MHEG-5 object compatible with EmulatedEventType.

•	EmulatedEventData shall be either a direct value, or a reference to an active Variable object of a type compatible with the associated data of EmulatedEventType.���

�Syntax description:�����SendEvent�-->�Target,�����EmulatedEventSource,�����EmulatedEventType,�����EmulatedEventData?���Target�-->�GenericObjectReference���EmulatedEventSource�-->�GenericObjectReference���EmulatedEventType�-->�IsAvailable | ContentAvailable | IsDeleted | IsRunning | IsStopped | UserInput | AnchorFired | TimerFired | AsynchStopped | InteractionCompleted | TestEvent | TokenMovedFrom | TokenMovedTo | FirstItemPresented | LastItemPresented | HeadItems | TailItems | ItemSelected | ItemDeselected | StreamEvent | StreamPlaying | StreamStopped | CounterTrigger | HighlightOn | HighlightOff | CursorEnter | CursorLeave | IsSelected | IsDeselected | EntryFieldFull���EmulatedEventData�-->�GenericBoolean | GenericInteger | GenericOctetString�����SetCursorShape�(NewCursorShape)�Set the shape of the free moving cursor.

This action shall have an effect only if the free-moving cursor option is implemented by the MHEG-5 engine.

If the NewCursorShape parameter is not encoded, the cursor is removed from the Scene.

Provisions of use:

•	The Target object shall be the active Scene object.

•	NewCursorShape shall refer to an active CursorShape object.���Syntax description:���SetCursorShape�-->�Target,�����NewCursorShape?���Target�-->�GenericObjectReference���NewCursorShape�-->�GenericObjectReference������

SetCursorPosition�(XCursor, YCursor)�Set the position of the free moving cursor.

This action shall have an effect only if the free-moving cursor option is implemented by the MHEG-5 engine.

Execute the following sequence of actions:

1)	Set the position of the cursor pointer within the coordinate space of the Scene.

2)	Generate CursorLeave and CursorEnter events if Interactible objects are affected by the effect of this action.

If an Interactible B overlaps another one A, a SetCursorPosition from a point in A (not in B) to a point within the overlapping area shall generate a CursorLeave(A) and a CursorEnter(B).

Provisions of use:

•	The Target object shall be the active Scene object.

•	Xcursor and YCursor shall correspond to a location within the rectangle defined by the SceneCoordinateSystem attribute of the active Scene.���Syntax description:���SetCursorPosition�-->�Target,�����XCursor,�����YCursor���Target�-->�GenericObjectReference���Xcursor�-->�GenericInteger���Ycursor�-->�GenericInteger�����GetCursorPosition�(XOut, YOut)�Set the Variables referenced by XOut and YOut to the location of the free moving cursor within the coordinate space of the Scene.

This action shall have an effect only if the free-moving cursor option is implemented by the MHEG-5 engine.���Provisions of use:

•	The Target object shall be the active Scene object.

•	Xout and YOut shall refer to active IntegerVariable objects.

Syntax description:���GetCursorPosition�-->�Target,�����XOut,�����YOut���Target�-->�GenericObjectReference���Xout�-->�ObjectReference���Yout�-->�ObjectReference���11.5	Formal description

Scene Class�-->�Group Class,����InputEventRegister,����SceneCoordinateSystem,����AspectRatio?,����MovingCursor?,����NextScenes?��InputEventRegister�-->�INTEGER��SceneCoordinateSystem�-->�XScene, YScene��XScene,�-->�INTEGER��Yscene�-->�INTEGER��AspectRatio�-->�Width, Height��Width�-->�INTEGER��Height�-->�INTEGER��MovingCursor�-->�BOOLEAN��NextScenes�-->�NextScene+��NextScene�-->�SceneRef,����SceneWeight��SceneRef�-->�OctetString��SceneWeight�-->�INTEGER��12	Ingredient Class

Description:�Defines the functionality associated with classes that make up Scenes and Applications��Base class:�Root��Subclasses:�Link, Program, Palette, Font, CursorShape, Variable, Presentable��Status:�Abstract class��12.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

12.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ObjectIdentifier�Root�The ObjectNumber part of this attribute shall be unique within the group this object belongs to and shall not be 0. If the GroupIdentifier is encoded, it shall be set to the GroupIdentifier of the group this object belongs to.���12.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

InitiallyActive�This parameter is used to determine which objects in a Scene or an Application are initially active.

•	Optional Boolean.

•	Default value: True.

��ContentHook�Determine the encoding format of the data included or referenced by the Content attribute.

•	Optional Integer.

•	Default value: Depending on subclasses, the value encoded by Application in one of the following attributes: BitmapContentHook, LineArtContentHook, InterchangedProgramContentHook, StreamContentHook and TextContentHook.

��OriginalContent�Value of the Content internal attribute at preparation.

This attribute contains either included data or a reference to an external data source.

•	OriginalContent is an optional attribute.

•	Data type: ReferencedContent or IncludedContent.

•	Default value: None.

Included data is encoded directly within an OctetString.���A reference to an external data source is composed of:

1)	a ContentReference, which is an OctetString referencing an external piece of data.

•	Data type: OctetString.

2)	an optional ContentSize, which represents the size in bytes of the external source. This attribute might be used by the MHEG-5 engine to determine how many resources are requested to render the Ingredient. It is the responsibility of the application to ensure the compatibility of the ContentSize attribute with the actual size of the external source of data.

•	ContentSize is an optional attribute.

•	Data type: Integer.

•	Default value: None.

	Example: Consider a Bitmap object whose OriginalContent attribute is set to a reference to an external data file. Its ContentSize attribute should contain an estimation of the size of the external data.���

�3)	an optional ContentCachePriority, which represents the relevance of caching this external data source. This attribute might be compared by the MHEG-5 engine to other ContentCachePriority attributes to determine which external data source has the highest priority of being required again by the application. A higher value indicates a higher level of priority. It is the responsibility of the application to keep these priorities to a consistent range. The MHEG-5 engine is recommended to cache external data sources with higher priority in preference to data sources with lower priority.���•	ContentCachePriority is an optional attribute.

•	Data type: Integer within the range [0, 255].

•	Default value: 127.

•	Specific value: 0 means caching is not allowed for external content data referenced by this Ingredient.

��Shared�Indicate whether the Ingredient object is intended for continuous presentation across a Scene transition. This is used to prevent destroying objects that are used in consecutive scenes. Specifically, when a TransitionTo action is targeted to a Scene B while Scene A is active, all active ingredients of the active Application object are automatically deactivated except those that have the Shared attribute set to True.���Provision of use:

•	If the Ingredient object is an item of a Scene or of a Template, Shared shall not be encoded.

Synopsis:

•	Optional Boolean.

•	Default value: False.��12.1.3	Own internal attributes

This class defines the following additional internal attributes:

Content�This attribute contains either included data or a reference to an external data source.

Included data is encoded directly within an OctetString.

A reference to an external data source is composed of:

1)	a ContentReference, which is an OctetString referencing an external piece of data.

•	Data type: OctetString.

•	Initial value: ContentSize of OriginalContent attribute.

2)	an optional ContentSize, which represents the size in bytes of the external source.

•	ContentSize is an optional attribute.

•	Data type: Integer.

•	Initial value: ContentSize of OriginalContent attribute.���

�3)	an optional ContentCachePriority, which represents the relevance of caching this external data source.

•	ContentCachePriority is an optional attribute.

•	Data type: Integer within the range [0, 255].

•	Initial value: ContentCachePriority of OriginalContent attribute.

•	Specific value: 0 means caching is not allowed for external content data referenced by this Ingredient.

	The Content attribute shall not be defined for classes specifying that OriginalContent shall not be encoded.

•	Optional attribute.

•	Data type: ReferencedContent or IncludedContent.

•	Initial value: Value of OriginalContent.��12.2	Events

This class has the same events as its base class, with identical semantics.

12.3	Internal behaviours

The following internal behaviour's semantics have changed from this object’s base class:

Destruction�Execute the following sequence of actions:

1)	If the Content attribute is set to a reference to external data source and if ContentCachePriority is set to 0, the MHEG-5 engine shall free all resources allocated to the external content data of the Ingredient.

2)	If the Content attribute is set to a reference to external data source and if ContentCachePriority is different from 0, the MHEG-5 engine may free all resources allocated to the external content data of the Ingredient, or cache it.

3)	Apply the Destruction behaviour as inherited from the Root class.��12.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetData�(NewContent)�Set the Content attribute of the target Ingredient to NewContent.

Provisions of use:

•	The Target object shall be an available Ingredient object.

•	The ContentHook of the target Ingredient object shall be encoded.

•	Data included or referenced by NewContent shall have the encoding format determined by ContentHook of the target Ingredient.���

�•	If Content is currently set to included data, NewContent shall be set or refer to included data.

•	If Content is currently set to a reference to an external data source, then NewContent shall be set or refer to a reference to an external data source.

Syntax description:���SetData�-->�Target,�����NewContent���Target�-->�GenericObjectReference���NewContent�-->�NewIncludedContent | NewReferencedContent���NewIncludedContent�-->�GenericOctetString���NewReferencedContent�-->�NewContentReference,�����NewContentSize?,�����NewContentCachePriority?���NewContentReference�-->�GenericContentReference���NewContentSize�-->�GenericInteger���NewContentCachePriority�-->�GenericInteger�����Clone�(CloneRefVar)�If the engine supports the Cloning option, the effect of this action is described below. Engines that do not support the Cloning option shall ignore this action.

This action copies the Target adding the copy to the same group that contains the Target using a unique ObjectReference obtained from the engine. The ObjectReference referring to the copy is returned in the ObjectRefVariable referenced by CloneRefVar.

Execute the following sequence of actions:

1)	Determine a unique ObjectReference within the same group as the Target.���2)	Create a copy of the Target, taking into account only the exchanged attributes and not the internal attributes. The ObjectIdentifier attribute inherited from the Root class is not copied, but set to the ObjectReference determined in step 1.

3)	Add the copy to the group containing the Target object.

4)	Set the ObjectRefVariable referenced by CloneRefVar to the ObjectReference determined in step 1.

5)	Apply the Preparation behaviour to the copy.

An object created using this action is deactivated/destroyed when the group that contains that object is deactivated/destroyed. The objects are deactivated/destroyed along with other static Ingredients in the reverse order of creation. A dynamically created Ingredient can also be destroyed using the Unload elementary action if its Content attribute is not Null.���

�Provisions of use:

•	The Target object shall be an available Ingredient.

•	CloneRefVar shall be an active ObjectRefVariable.

Syntax description:���Clone�-->�Target,�����CloneRefVar���Target�-->�GenericObjectReference���CloneRefVar�-->�ObjectReference�����Preload�Prepare an Ingredient and provide a hint to the MHEG-5 engine to prepare the content data of an Ingredient for future use.

Execute the following sequence of actions:

1)	Apply the Preparation behaviour.

2)	The MHEG-5 engine may optionally retrieve and/or decode the content data associated with the target Ingredient object.

Provisions of use:

•	The Target object shall be non-available Ingredient object.

•	The Content attribute of the target Ingredient shall be different from Null.

Syntax description:���Preload�-->�Target���Target�-->�GenericObjectReference�������Unload�Destroy an Ingredient and provide a hint to the MHEG-5 engine to free resources allocated to an Ingredient.

Execute the following sequence of actions:

1)	Apply the Destruction behaviour.

Provisions of use:

•	The Target object shall be an available and inactive Ingredient object.

•	The Content attribute of the target Ingredient shall be different from Null.���Syntax description:���Unload�-->�Target���Target�-->�GenericObjectReference���12.5	Formal description

Ingredient Class�-->�Root Class,����InitiallyActive?,����ContentHook?,����OriginalContent?,����Shared?��InitiallyActive�-->�BOOLEAN��ContentHook�-->�INTEGER��OriginalContent�-->�IncludedContent | ReferencedContent��IncludedContent�-->�OctetString��ReferencedContent�-->�ContentReference,����ContentSize?,����ContentCachePriority?��ContentSize�-->�INTEGER��ContentCachePriority�-->�INTEGER��Shared�-->�BOOLEAN��13	Link Class

Description:�Defines the functionality associated with reacting to events by performing a sequence of elementary actions��Base class:�Ingredient��Subclasses:�None��Status:�Concrete class��13.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

13.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��13.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

LinkCondition�The LinkCondition consists of an EventSource, an EventType and an EventData.���

�When an event emanates from an object, the MHEG-5 engine shall fire a specific Link if and only if:

•	the Link is active;

•	the EventSource is equal to the object reference of the object from which the event emanated (the GroupIdentifier defaults to the GroupIdentifier of the Group in which the Link itself is included);

•	the EventType is equal to the type of event that occurred; and

•	either, the EventData is equal to the data value provided with the event, or the EventData is not encoded.���

LinkEffect�NOTE – The type of data passed with each event is described in clause 53. The firing of a Link object leads to the execution of its LinkEffect.

Inclusion of an Action object.

When the Link fires, the elementary actions within this Action object are executed in synchronous order.��13.1.3	Own internal attributes

This class defines no additional internal attribute.

13.2	Events

This class has the same events as its base class, with identical semantics.

13.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Activation�Execute the following sequence of actions:

1)	Apply the Activation behaviour as inherited from the base class.

2)	Make the Link object receptive to events that fulfil its LinkCondition.

3)	Set the RunningStatus of the Link to True.

4)	Generate an IsRunning event.

��Deactivation�Execute the following sequence of actions:

1)	Put the Link object in an inactive state so that it is not receptive to events.

2)	Apply the Deactivation behaviour as inherited from the base class.��13.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

Activate�Make a Link receptive to events that meet its LinkCondition.

Execute the following actions:

1)	If the target Link object is active, disregard this action.���

�2)	If the target Link is inactive, apply the Activation behaviour of the Link object.���Syntax description:���Activate�-->�Target���Target�-->�GenericObjectReference��Deactivate�Make a Link not receptive to events.

Execute the following actions:

1)	If the target Link object is inactive, disregard this action.

2)	If the target Link is active, apply the Deactivation behaviour of the Link object.

Provision of use:

•	The Target object shall be an available Link object.

Syntax description:���Deactivate�-->�Target���Target�-->�GenericObjectReference��13.5	Formal description

Link Class�-->�Ingredient Class,����LinkCondition,����LinkEffect��LinkCondition�-->�EventSource,����EventType,����EventData?��LinkEffect�-->�Action Class��EventSource�-->�ObjectReference��EventType�-->�IsAvailable | ContentAvailable | IsDeleted | IsRunning | IsStopped | UserInput | AnchorFired | TimerFired | AsynchStopped | InteractionCompleted | TestEvent | TokenMovedFrom | TokenMovedTo | FirstItemPresented | LastItemPresented | HeadItems | TailItems | ItemSelected | ItemDeselected | StreamEvent | StreamPlaying | StreamStopped | CounterTrigger | HighlightOn | HighlightOff | CursorEnter | CursorLeave | IsSelected | IsDeselected | EntryFieldFull | EngineEvent��EventData�-->�OctetString | BOOLEAN | INTEGER���14	Program Class

Description:�Defines means to handle execution of external pieces of procedural code��Base class:�Ingredient��Subclasses:�RemoteProgram, ResidentProgram, InterchangedProgram��Status:�Abstract class��14.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

14.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��InitiallyActive�Ingredient�This attribute is mandatory for this class and shall be set to False.��14.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Name�Name of the external procedural code to be called when the Program object is activated.

The mapping of Name to the actual name of the external procedural code is not defined by this Recommendation.

•	OctetString.

��InitiallyAvailable�This parameter is used to determine which Programs in a Scene or an Application are initially prepared.

•	Optional Boolean.

•	Default value: True.��14.1.3	Own internal attributes

This class defines no additional internal attribute.

14.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following event is defined:

AsynchStopped�This event shall be generated when a Program object, that is executed via the Fork action, has terminated its execution.

•	No associated data.���14.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Activation�1)	If not done during preparation, locate the external procedural code by using the Name attribute.

2)	If the external procedural code is not found, disregard this action. Otherwise:

3)	Set the parameters of the external procedural code of the Program as indicated by Parameters.

4)	Apply the Activation behaviour as inherited from the base class.

5)	Start execution of the external procedural code synchronously or asynchronously according to the action invoking the execution.

6)	Set the RunningStatus attribute to True.

7)	Generate an IsRunning event.

��Deactivation�If the RunningStatus attribute is False, ignore this action. Otherwise, execute the following sequence of actions:

1)	Force the end of execution of the Program.

2)	Apply Deactivation behaviour as inherited from the base class.

NOTE – The Deactivation behaviour generates an IsStopped event, as defined in Root.��14.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetData�This action shall not be applied to an object of any subclasses of the Program class.

��Call�(CallSucceeded, Parameters)�Request execution of an external piece of procedural code and wait for the end of execution.

Execute the following sequence of actions:

1)	If the Program is non-available, apply the Preparation behaviour.

2)	If the Program is active, disregard this action. Otherwise:

3)	Apply the Activation behaviour.

4)	Wait for the execution of the external procedural code to finish. If the Program finishes abnormally, set the Variable referenced by CallSucceeded to False; otherwise, set it to True.

5)	Set the value of the Variables referenced by Parameters to the values returned by the Program (these may be invalid if CallSucceeded is False).

6)	Apply the Deactivation behaviour.���

�Provisions of use:

•	CallSucceeded shall be set to an active BooleanVariable object.

•	Parameters shall be set to a list of values corresponding to the expected parameters of the external procedural code. The order of the Parameters list shall correspond to the order of parameters of the procedural code. Parameters passed by value shall be set directly to the corresponding value. Parameters passed by reference shall be passed via active Variable objects of the corresponding data type.

Syntax description:���Call�-->�Target,�����CallSucceeded,�����Parameters?���Target�-->�GenericObjectReference���CallSucceeded�-->�ObjectReference���Parameters�-->�Parameter+���Parameter�-->�GenericBoolean | GenericInteger | GenericOctetString | GenericObjectReference | GenericContentReference�����Fork�(ForkSucceeded, Parameters)�Request execution of an external piece of procedural code without waiting for the end of execution.

Execute the following sequence of actions:

1)	If the Program is non-available, apply the Preparation behaviour.

2)	If the Program is active, disregard this action. Otherwise:

3)	Apply the Activation behaviour.

4)	Pass control back to the MHEG-5 engine without waiting for the execution of the external procedural code to finish.

When the execution of the external procedural code finishes, execute the following sequence of actions:

1)	If the Program finishes abnormally, set the Variable referenced by ForkSucceeded to False; otherwise, set it to True.

2)	Set the value of the Variables referenced by Parameters to the values returned by the Program (these may be invalid if ForkSucceeded is False).

3)	Apply the Deactivation behaviour.

4)	Generate an AsynchStopped event.

NOTE – Parameters may be modified by the Program; in that case, these parameters are not defined until the Program is normally finished, that is until an AsynchStopped is generated.���

�Provisions of use:

•	ForkSucceeded shall be set to an active BooleanVariable object.

•	Parameters shall be set to a list of values corresponding to the expected parameters of the external procedural code. The order of the Parameters list shall correspond to the order of parameters of the procedural code. Parameters passed by value shall be set directly to the corresponding value. Parameters passed by reference shall be passed via active Variable objects of the corresponding data type.

Syntax description:���Fork�-->�Target,�����ForkSucceeded,�����Parameters?���Target�-->�GenericObjectReference���ForkSucceeded�-->�ObjectReference���Parameters�-->�Parameter+���Parameter�-->�GenericBoolean | GenericInteger | GenericOctetString | GenericObjectReference | GenericContentReference�����Stop�Interrupt the execution of an external piece of procedural code.

Execute the following sequence of actions:

1)	If the Program is inactive, disregard this action. Otherwise:

2)	Apply the Deactivation behaviour.

Provision of use:

•	The Target object shall be an available Program object.

Syntax description:���Stop�-->�Target���Target�-->�GenericObjectReference��14.5	Formal description

Program Class�-->�Ingredient Class,����Name,����InitiallyAvailable?��Name�-->�OctetString��InitiallyAvailable�-->�BOOLEAN���15	ResidentProgram Class

Description:�Defines means to handle calls to locally executed external procedural code

A ResidentProgram object provides an interface to a piece of procedural code that is local to the device on which the MHEG-5 engine is running. This Recommendation does not specify a naming paradigm for such a procedural interface nor the internal semantics of calling such a Program.��Base class:�Program��Subclasses:�None��Status:�Concrete class��15.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

15.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��15.1.2	Own exchanged attributes

This class defines no additional exchanged attributes.

15.1.3	Own internal attributes

This class defines no additional internal attribute.

15.2	Events

This class has the same events as its base class, with identical semantics.

15.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

15.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

15.5	Formal description

ResidentProgram Class�-->�Program Class���16	RemoteProgram Class

Description:�Defines means to handle calls to remotely executed procedural code

A RemoteProgram object provides an interface to a piece of procedural code that is to be run at a location outside the device on which the MHEG-5 engine is running. The location of the remote Program object is provided by means of the ProgramConnectionTag attribute.��Base class:�Program��Subclasses:�None��Status:�Concrete class��16.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

16.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��16.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

ProgramConnec-tionTag�Tag of the connection used to locate the remote procedural code to be called when the Program object is activated. ProgramConnectionTag is an identifier of a connection opened by the OpenConnection action of the Application class.

ProgramConnectionTag is optional. When it is not encoded, the external procedural code is located relatively to the default name space of the application.

•	Optional Integer.

•	Default value: None.��16.1.3	Own internal attributes

This class defines no additional internal attribute.

16.2	Events

This class has the same events as its base class, with identical semantics.

16.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Activation�1)	If not done during preparation, locate the remote external procedural code by using the Name and ProgramConnectionTag attributes.���

�2)	If the remote external procedural code is not found, disregard this action. Otherwise:

3)	Apply the Activation behaviour as inherited from the base class.��16.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

16.5	Formal description

RemoteProgram Class�-->�Program Class,����ProgramConnectionTag?��ProgramConnectionTag�-->�INTEGER��17	InterchangedProgram Class

Description:�Defines means to handle program code interchanged as the OriginalContent of an InterchangedProgram object and executed or interpreted on the same device as the MHEG-5 engine

This Recommendation does not specify how the procedural code is executed or interpreted on the device on which the MHEG-5 engine is running.��Base class:�Program��Subclasses:�None��Status:�Concrete class��17.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

17.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�Either this attribute or its corresponding default attribute in the Application class (InterchangedProgramContentHook) is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��17.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

17.1.3	Own internal attributes

This class defines no additional internal attribute.

�17.2	Events

This class has the same events as its base class, with identical semantics.

17.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

17.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

17.5	Formal description

InterchangedProgram Class�-->�Program Class��18	Palette Class

Description:�Defines a class to represent a colour look-up table��Base class:�Ingredient��Subclasses:�None��Status:�Concrete class��18.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

18.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��InitiallyActive�Ingredient�If encoded, this attribute shall be set to True for this class.��18.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

18.1.3	Own internal attributes

This class defines no additional internal attribute.

18.2	Events

This class has the same events as its base class, with identical semantics.

18.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

�18.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

18.5	Formal description

Palette Class�-->�Ingredient Class��19	Font Class

Description:�Defines a class to represent a character font used for rendering text objects��Base class:�Ingredient��Subclasses:�None��Status:�Concrete class��19.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

19.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��InitiallyActive�Ingredient�If encoded, this attribute shall be set to True for this class.��19.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

19.1.3	Own internal attributes

This class defines no additional internal attribute.

19.2	Events

This class has the same events as its base class, with identical semantics.

19.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

19.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

19.5	Formal description

Font Class�-->�Ingredient Class���20	CursorShape Class

Description:�Defines encapsulation for the data structures used to represent a free-moving cursor��Base class:�Ingredient��Subclasses:�None��Status:�Concrete class��20.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

20.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��InitiallyActive�Ingredient�If encoded, this attribute shall be set to True for this class.��20.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

20.1.3	Own internal attributes

This class defines no additional internal attribute.

20.2	Events

This class has the same events as its base class, with identical semantics.

20.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

20.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

20.5	Formal description

CursorShape Class�-->�Ingredient Class��21	Variable Class

Description:�Defines a variable within the context of a Group object��Base class:�Ingredient��Subclasses:�BooleanVariable, IntegerVariable, OctetStringVariable, ObjectReferenceVariable, ContentRefVariable��Status:�Abstract class���21.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

21.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��InitiallyActive�Ingredient�If encoded, this attribute shall be set to True for this class.��21.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

OriginalValue�Value of the variable when it is first prepared.

The OriginalValue attribute shall be of one of these types: Boolean, Integer, OctetString, ObjectReference, or ContentReference.��21.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�Current value of the variable.

The Value attribute may be of one of these types: Boolean, Integer, OctetString, ObjectReference, or ContentReference. The only elementary action that may modify this attribute is the SetVariable action.

•	Initial value: Value of the OriginalValue attribute.��21.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following event is defined:

TestEvent�This event shall be generated by the MHEG-5 engine to indicate that a subclass of Variable has been tested.

•	Associated data: Boolean. The result of the comparison between the variable and the parameter from the TestVariable action.��21.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Activation�Execute the following sequence of actions:

1)	Apply the Activation behaviour as defined in the base class.

2)	Set the RunningStatus attribute to True and generate an IsRunning event.��21.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

�

SetVariable�(NewVariableValue)�Set the Value attribute of the Target object to NewVariableValue.

Provisions of use:

•	The Target object shall be an active object of one of the following classes: BooleanVariable, IntegerVariable, OctetStringVariable, ObjectRefVariable or ContentRefVariable.

•	NewVariableValue shall be set or refer to a value that is not necessarily of the same type as the current Value attribute of the target Variable. When NewVariableValue and the Target object are of two different types, NewVariableValue is automatically converted into the class type of Target.

NOTE – More details on conversions are given in subclauses relevant to each Variable subclass.

Syntax description:���SetVariable�-->�Target,�����NewVariableValue���Target�-->�GenericObjectReference���NewVariableValue�-->�GenericInteger |

GenericBoolean |

GenericOctetString |

GenericObjectReference |

GenericContentReference�����TestVariable

(Target, Operator, ComparisonValue) �Execute the following sequence of actions:

1)	Compare the Value of the variable to the ComparisonValue parameter. The Variable value is the first operand, the ComparisonValue parameter is the second operand of the comparison.

2)	Generate the corresponding TestEvent.

•	Source: Target of TestVariable.

•	Associated data: Boolean.

Provisions of use:

•	The Target object shall be an active object of one of the following classes: BooleanVariable, IntegerVariable, OctetStringVariable, ObjectRefVariable or ContentRefVariable.

•	The ComparisonValue shall be of corresponding type (GenericBoolean, GenericInteger, GenericOctetString, GenericObjectReference and GenericContentReference respectively). No implicit type conversion is allowed.

•	When values are Integer, the Operator shall be an integer in the range 1 to 6 with the following meaning:

	1 means equal, 2 not equal,���

�3 strictly less than, 4 less than or equal to,

5 strictly greater than, 6 greater than or equal to.

•	When values are Boolean, OctetString, ObjectReference or ContentReference, the Operator shall be an integer in the range 1 to 2 with the following meaning:

1 means equal, 2 not equal.

Syntax description:���TestVariable�-->�Target,�����Operator,�����ComparisonValue���Target�-->�GenericObjectReference���ComparisonValue�-->�GenericInteger |

GenericBoolean |

GenericOctetString |

GenericObjectReference |

GenericContentReference���Operator�-->�GenericInteger��21.5	Formal description

Variable Class�-->�Ingredient Class,����OriginalValue��OriginalValue�-->�BOOLEAN | INTEGER | OctetString | ObjectReference | ContentReference��22	BooleanVariable Class

Description:�Defines a variable of type Boolean within the context of a Group object��Base class:�Variable��Subclasses:�None��Status:�Concrete class��22.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

22.1.1	Inherited attributes

This class has all the attributes of its base class, with no additional constraints.

22.1.2	Own exchanged attributes

OriginalValue�The OriginalValue attribute shall be a Boolean.���22.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�•	The Value attribute shall be a Boolean.��22.2	Events

This class has the same events as its base class, with identical semantics.

22.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

22.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 action is defined:

SetVariable�(NewVariableValue)�Provision of use:

•	The NewVariableValue shall be a GenericBoolean.��22.5	Formal description

BooleanVariable Class�-->�Variable Class��23	IntegerVariable Class

Description:�Defines a variable of type Integer within the context of a Group object��Base class:�Variable��Subclasses:�None��Status:�Concrete class��23.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

23.1.1	Inherited attributes

This class has all the attributes of its base class, with no additional constraints.

23.1.2	Own exchanged attributes

OriginalValue�The OriginalValue attribute shall be an Integer.��23.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�The Value attribute shall be an Integer.��23.2	Events

This class has the same events as its base class, with identical semantics.

�23.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

23.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetVariable�(NewVariableValue)�Provision of use:

•	The NewVariableValue shall be of one of the following types: Integer or OctetString.

–	When the NewVariableValue is of type Integer, the value of the Target variable is set to the value of NewVariableValue.

–	When the NewVariableValue is of type OctetString, it is first converted to an Integer, then value of the Target variable is set to that Integer value.

	Rules for conversion:

1)	OctetString conversion shall make use of the Application CharacterSet attribute. If several character sets are listed, conversion is made on characters as long as they are "numeric" in their code set.

2)	Conversion shall consider that the OctetString represents the Integer in base 10.

3)	OctetString conversion shall be made on the first numeric characters (in ISO/IEC 646: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and shall stop as soon as a non-numeric character is encountered [with exception of the minus sign in first position, as detailed in rule 4) below]. For instance an OctetString representing "123abc" will be converted into the Integer 123.

4)	Minus sign is allowed as first character of an OctetString.�For instance OctetString representing "-123" will be converted into Integer -123, but "12-345" will be converted into Integer 12 according to rule 3).

��Add�(Value)�Add Target Variable to Value. Target variable is the first operand of the infix operation. Result is stored in Target Variable.

Provision of use:

•	The Target object shall be an active IntegerVariable object.���Syntax description:���Add�-->�Target,�����Value���Target�-->�GenericObjectReference���Value�-->�GenericInteger������

Subtract�(Value)�Subtract Value from Target Variable. Target variable is the first operand of the infix operation. Result is stored in Target Variable.

Provision of use:

•	The Target object shall be an active IntegerVariable object.

Syntax description:�����Subtract�-->�Target,�����Value���Target�-->�GenericObjectReference���Value�-->�GenericInteger�����Multiply�(Value)�Multiply Target Variable by Value. Target variable is the first operand of the infix operation. Result is stored in Target Variable.

Provision of use:

•	The Target object shall be an active IntegerVariable object.

Syntax description:�����Multiply�-->�Target,�����Value���Target�-->�GenericObjectReference���Value�-->�GenericInteger�����Divide�(Value)�Divide Target Variable by Value. Target variable is the first operand of the infix operation. Result is stored in Target Variable. When the result is not an integer value, rounding is made towards 0.

Provision of use:

•	The Target object shall be an active IntegerVariable object.�����Syntax description:�����Divide�-->�Target,�����Value���Target�-->�GenericObjectReference���Value�-->�GenericInteger�������Modulo�(Value)�Return the remainder modulo Value of Target – as defined by usual integer arithmetic rules, that is to say that for any integers a and b the following equality is satisfied:

(a DIV b) (b + (a MOD b) = a.

�����

�Target variable is the first operand of the infix operation. Result is stored in Target Variable.�����Provision of use:

•	The Target object shall be an active IntegerVariable object.

Syntax description:�����Modulo�-->�Target,�����Value���Target�-->�GenericObjectReference���Value�-->�GenericInteger��23.5	Formal description

IntegerVariable Class�-->�Variable Class��24	OctetStringVariable Class

Description:�Defines a variable of type OctetString within the context of a Group object��Base class:�Variable��Subclasses:�None��Status:�Concrete class��24.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

24.1.1	Inherited attributes

This class has all the attributes of its base class, with no additional constraints.

24.1.2	Own exchanged attributes

OriginalValue�The OriginalValue attribute shall be an OctetString.��24.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�•	The Value attribute shall be an OctetString.��24.2	Events

This class has the same events as its base class, with identical semantics.

24.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

�24.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetVariable�(NewVariableValue)�Provision of use:

•	The NewVariableValue shall be of one of the following types: Integer or OctetString.

–	When the NewVariableValue is of type OctetString, the value of the Target variable is set to the value of NewVariableValue.

–	When the NewVariableValue is of type Integer, it is first converted to an OctetString, then value of the Target variable is set to that OctetString value.

	Rules for conversion:

1)	Integer conversion to OctetString shall make use of the Application CharacterSet attribute.

2)	Conversion shall be made to the representation of the integer in base 10.

��Append�(AppendValue)�Appends AppendValue to Target Variable. Target variable is the first operand of the infix operation. Result is stored in Target Variable.

Provision of use:

•	The Target object shall be an active OctetStringVariable object.���Syntax description:���Append�-->�Target,�����AppendValue���Target�-->�GenericObjectReference���AppendValue�-->�GenericOctetString��24.5	Formal description

OctetStringVariable Class�-->�Variable Class��25	ObjectRefVariable Class

Description:�Defines a variable of type ObjectReference within the context of a Group object��Base class:�Variable��Subclasses:�None��Status:�Concrete class��25.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

�25.1.1	Inherited attributes

This class has all the attributes of its base class, with no additional constraints.

25.1.2	Own exchanged attributes

OriginalValue�The OriginalValue attribute shall be an ObjectReference.��25.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�•	The Value attribute shall be an ObjectReference.��25.2	Events

This class has the same events as its base class, with identical semantics.

25.3	Internal behaviours

The internal behaviours of this class are the same semantics as for its base class.

25.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 action is defined:

SetVariable�(NewVariableValue)�Provision of use:

•	The NewVariableValue shall be a GenericObjectReference.��25.5	Formal description

ObjectRefVariable Class�-->�Variable Class��26	ContentRefVariable Class

Description:�Defines a variable of type ContentReference within the context of a Group object��Base class:�Variable��Subclasses:�None��Status:�Concrete class��26.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

26.1.1	Inherited attributes

This class has all the attributes of its base class, with no additional constraints.

26.1.2	Own exchanged attributes

OriginalValue�The OriginalValue attribute shall be a ContentReference.���26.1.3	Own internal attributes

This class defines the following additional internal attribute:

Value�•	The Value attribute shall be a ContentReference.��26.2	Events

This class has the same events as its base class, with identical semantics.

26.3	Internal behaviours

The internal behaviours of this class are the same semantics as for its base class.

26.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 action is defined:

SetVariable�(NewVariableValue)�Provision of use:

•	The NewVariableValue shall be a GenericContentReference.��26.5	Formal description

ContentRefVariable Class�-->�Variable Class��27	Presentable Class

Description:�Defines the behaviour of objects that may be presented within a Scene��Base class:�Ingredient��Subclasses:�Stream, Visible, Audio, TokenGroup��Status:�Abstract class��27.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

27.1.1	Inherited attributes

This class has all the attributes of its base class, with identical semantics.

27.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

27.1.3	Own internal attributes

This class defines no additional internal attribute.

27.2	Events

This class has the same events as its base class, with identical semantics.

�27.3	Internal behaviours

The internal behaviours of this class have the same semantics as for its base class.

27.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics, except as noted below (SetData). In addition, the following applicable MHEG-5 actions are defined:

SetData�Execute synchronously the following actions:

1)	Execute the SetData action as defined in the Ingredient class.

2)	If the Presentable is active, present it again immediately using the new value of Content.

Provisions of use and syntax description are provided in the Ingredient class.

��Run�Execute the following actions:

1)	If the target Presentable is active, disregard this action.

2)	If the target Presentable is non-available or is inactive, apply the Activation behaviour of the Presentable.

Syntax description:���Run�-->�Target���Target�-->�GenericObjectReference�����Stop�Execute the following actions:

1)	If the target Presentable is inactive, disregard this action.

2)	If the target Presentable is active, apply the Deactivation behaviour of the Presentable.

Provision of use:

•	The Target object shall be available.

Syntax description:���Stop�-->�Target���Target�-->�GenericObjectReference��27.5	Formal description

Presentable Class�-->�Ingredient Class��28	TokenManager Class

Description:�Mix-in class that defines functions to manage the navigation of a logical token among a group of elements. The token may be used to give a special behaviour to one element in the group, such as the highlight in a jumping-highlight navigation scheme. ��Base class:�None (mix-in)���

Subclasses:�TokenGroup��Status:�Abstract class��28.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

28.1.1	Inherited attributes

This class has no inherited attributes.

28.1.2	Own exchanged attributes

This class defines the following exchanged attributes:

MovementTable�Table that indicates to which element to move the token according to the previous element and an arbitrary number of movements.

The MovementTable attribute describes a discrete function c2 = f(c1, m), where c1 and c2 are one-based indices of elements, and m is the Movement parameter used in the definition of the Move action. The index 0 indicates that no element holds the token.

For instance, if the token is on element 2, and the action Move(4) is executed, the expression f(2, 4) evaluates to the number of the element to get the token.

The function f is represented as a N (M array, where N is the number of elements in the group and M is the number of possible movements. The elements are referred to by a one-based numeric index.

•	Optional attribute.

•	Sequence of Movement data structures. Each Movement has an implicit MovementIdentifier, which is a one-based Integer index computed according to the position of the Movement in the sequence. Each Movement further consists of:

–	TargetElements: Sequence of Integers. These Integers define which element will get the token when a Movement is performed.

•	Default value: none

Movement Table Example:

Appearance of elements on the screen:���Element 1�Element 2���Element 3�Element 4���Content of the Movement Table:���Token at:�Element 1�Element 2�Element 3�Element 4���Move(1)�1�2�1�2���Move(2)�3�4�3�4���Move(3)�1�1�3�3���Move(4)�2�2�4�4���Move(5)�4�2�3�4���Move(6)�1�2�2�4���

�According to this table, the action Move(3) when the token is on Element 2 would result in Element 1 getting the token. The action Move(4) when the token is on Element 4 would have no effect at all.

The movements shown in the table could map to remote control keys as follows:���Move(1) (UpArrow�Move(4) (RightArrow���Move(2) (DownArrow�Move(5) (DownDiagonalRight���Move(3) (LeftArrow�Move(6) (UpDiagonalRight���NOTE – If a cell in the MovementTable contains the value 0, the corresponding Move will result in no element having the token. See TokenPosition below.��28.1.3	Own internal attributes

This class defines the following additional internal attribute:

TokenPosition�Index of the element that currently has the token.

•	Integer within the range [0, number of elements].

•	Initial value: 1.

•	The value 0 has the special meaning that no element has the token.��28.2	Events

This class defines the following events:

TokenMovedFrom�This event is generated when an element loses the token.

•	Associated data: Index. This is an Integer representing the index of the element that loses the token.

��TokenMovedTo�This event is generated when an element gets the token.

•	Associated data: Index. This is an Integer representing the index of the element that gets the token.��28.3	Internal behaviours

This class defines the following internal behaviour:

TransferToken�(TargetElement)�Execute the following sequence of actions:

1)	Generate a TokenMovedFrom event with the value of the TokenPosition attribute as associated data.

2)	Set the TokenPosition attribute to the value of the TargetElement parameter.

3)	Generate a TokenMovedTo event with the value of the TokenPosition attribute as associated data.���The TokenMovedTo and TokenMovedFrom events will be generated even if the value of TokenPosition after (before) the token moved was 0.���28.4	Effect of MHEG-5 actions

This class defines the following applicable MHEG-5 actions:

Move�Move the token between elements of the group. The movement to apply from any particular element location is described in the MovementTable attribute.

Execute the following sequence of actions:

1)	Determine the TargetElement by using the MovementTable.���2)	If the TargetElement does not have the token yet, apply the TransferToken(TargetElement) behaviour of the TokenManager.

Provision of use:

•	The Target object shall be an available TokenManager.

Syntax description:���Move�-->�Target,�����Movement Identifier���Target�-->�GenericObjectReference���Movement Identifier�-->�GenericInteger�� ���MoveTo (Index)�Move the token to a specific element of the group.

Execute the following sequence of actions:

1)	Determine the TargetElement by using the Index parameter of the MoveTo action.

2)	If the target element does not have the token yet, apply the TransferToken(TargetElement) behaviour of the TokenManager.

Provisions of use:

•	The Target object shall be an available TokenManager.

•	Index shall be set within the range [0, N], where N is the number of elements in the group.

Syntax description:���MoveTo�-->�Target,�����Index���Target�-->�GenericObjectReference���Index�-->�GenericInteger�����GetTokenPosition�(TokenPositionVar)�Set the Variable referenced by TokenPositionVar to the value of the TokenPosition attribute.

Provisions of use:

•	The Target object shall be an available TokenManager.

•	TokenPositionVar shall refer to an active IntegerVariable object.���

�Syntax description:���GetTokenPosition�-->�Target,�����TokenPositionVar���Target�-->�GenericObjectReference���TokenPositionVar�-->�ObjectReference��28.5	Formal description

TokenManager Class�-->�MovementTable?��MovementTable�-->�Movement+��Movement�-->�TargetElement+��TargetElement�-->�INTEGER��29	TokenGroup Class

Description:�Defines a group of Visible objects for navigation

Each Visible object in the group may hold a token, as defined in the TokenManager class. On the basis of the events that are generated when that token moves, a special behaviour for the Visible that holds the token may be implemented, such as a highlight.��Base class:�Presentable, TokenManager��Subclasses:�ListGroup��Status:�Concrete class��29.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

29.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��TokenPosition�TokenManager�In the TokenGroup class, this attribute shall take values only in the range [0,N], where N is the number of Visibles in the TokenGroup. The value 0 signifies that no Visible has the token.��

�29.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

TokenGroupItems�Set of TokenGroupItems that belong to the group. Each TokenGroupItem contains a reference to a Visible and a number of Actions, called ActionSlots. These actions may be executed on demand by the CallActionSlot action.

•	Sequence of the following data structures:

–	AVisible: Reference to a Visible object.

–	ActionSlots: Optional sequence of Action objects.

��NoTokenAc-tionSlots�Set of ActionSlot that may be executed on demand by the CallActionSlot action when no item has the token.

•	Optional attribute.

•	Sequence of ActionSlot.��29.1.3	Own internal attributes

This class defines no additional internal attribute.

29.2	Events

This class has the same events as its base classes, with identical semantics.

29.3	Internal behaviours

The following internal behaviours of this class have changes in semantics:

Activation�Execute the following sequence of actions:

1)	Apply the Activation behaviour as inherited from the Presentable class.

2)	Apply the Activation behaviour to each item in the order given by TokenGroupItems.

3)	Generate a TokenMovedTo event with the value of the TokenPosition attribute as associated data.

4)	Set the RunningStatus to True and generate an IsRunning event.

��Deactivation�1)	Generate a TokenMovedFrom event with the value of the TokenPosition attribute as associated data.

2)	Apply the Deactivation behaviour as inherited from the Presentable class.���29.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics, except as defined below. In addition, the following applicable MHEG-5 action is defined:

CallActionSlot (Index)�Execute an Action object associated with the item that currently has the token.

Execute the following sequence of actions:

1)	If TokenPosition is set to 0, consider the ActionSlots sequence of the NoTokenActionSlots attribute.

2)	If TokenPosition is different from 0, consider the ActionSlots sequence that is associated with the item that currently has the token.

3)	Consider the ActionSlot that is at position Index in the ActionSlots sequence. If this ActionSlot is NULL, then ignore the effect of the CallActionSlot action. Otherwise, execute that ActionSlot.���The execution of the CallActionSlot action is not completed until the ActionSlot action has been executed.

Provisions of use:

•	The Target object shall be an active TokenGroup object.

•	Index shall be set in the range [0, number of items in TokenGroupItem].

Syntax description:���CallActionSlot�-->�Target,�����Index���Target�-->�GenericObjectReference���Index�-->�GenericInteger��29.5	Formal description

TokenGroup Class�-->�Presentable Class,����TokenManager Class,����TokenGroupItems,����NoTokenActionSlots?��NoTokenActionSlots�-->�ActionSlots��TokenGroupItems�-->�TokenGroupItem+��TokenGroupItem�-->�Avisible,����ActionSlots?��Avisible�-->�ObjectReference��ActionSlots�-->�ActionSlot+��ActionSlot�-->�Action Class | NULL���30	ListGroup Class

Description:�This class defines locations on the screen for each position as defined in the MovementTable inherited from the base class. Furthermore, it defines functionality to present Visibles contained in an internal list at these locations and to add Visibles to, and remove Visibles from, this internal list.��Base class:�TokenGroup��Subclasses:�None��Status:�Concrete class��NOTE 1 – SetPosition, GetPosition, Run, Stop and other elementary actions may be targeted to Visibles in ListGroup; however, the author should be warned of the possible side effects of such actions (e.g. regarding Position of Visibles).

NOTE 2 – Although not recommended, it is allowed to have a Visible referenced by several ListGroups; in such case, behaviours of that Visible depend on which ListGroup or elementary actions are invoked. The author should be aware of possible side effects.

30.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

30.1.1	Inherited attributes

This class has all the attributes of its base class.

30.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Positions�Set of screen coordinates associated with the positions as specified by the TokenMovementTable attribute inherited from TokenGroup. Together these attributes specify the cells of the ListGroup. Each cell has an index, identical to the logical position as defined in the TokenMovementTable.

•	Sequence of the following data structure:

–	Position: Pair of integers (XPosition, YPosition).

��WrapAround�An optional Boolean indicating the behaviour of the ListGroup with respect to the presentation of the items in the ItemList.

•	Optional Boolean.

•	Default value: False.

��MultipleSelection�An optional Boolean that determines if the ListGroup allows multiple items to have their ItemSelectionStatus set to True simultaneously.

•	Optional Boolean.

•	Default value: False.���30.1.3	Own internal attributes

This class defines the following additional internal attributes:

ItemList�Set of references to Visibles that belong to the group. Each reference has implicitly an index number, starting from 1. This index number is used to refer to the references in the ItemList attribute.���Each item in the ItemList has a ItemSelectionStatus attribute. This ItemSelectionStatus is a Boolean, with a default value of False. This attribute can be set using the SelectItem and DeselectItem elementary actions; its value can be returned using the GetItemStatus elementary action. Note that this attribute is not part of the Visible objects referenced from the ItemList.���When the ListGroup is active, items of the ItemList, starting with the item which is indicated by the FirstItem attribute, are presented at the cells. The other items are made inactive. The presentation depends also on the value of the WrapAround attribute.���At preparation, this set is initialized to the set of references listed in the TokenGroupItems attribute.

•	Set of references to Visibles

•	Initial value: Empty set

��FirstItem�The index of the item of the ItemList which is presented at the first cell. This defines a "window" on the ordered list of items in the ItemList. This window is equal in size to the number of cells and the position of this window with respect to the items can be changed using the ScrollItems elementary action.���The presentation of the items in the list depends on the position of this window, and the value of the WrapAround attribute.���If there are at least as many items in the ItemList as there are cells, the window can be visualized easily. This situation is depicted twice below. In the first example, WrapAround is False, i.e. the list is not wrapping:��� EMBED Word.Picture.6 ���

Figure 6/T.172 – Presentation when WrapAround is False

�

�In this case, items F and G are presented at cells 1 and 2 respectively, while the other items are not presented. Cell 3 remains unused.���In the next example, WrapAround is True, i.e. the list is wrapping:��� EMBED Word.Picture.6 ���

Figure 7/T.172 – Presentation when WrapAround is True

�In this case, items F, G and A are presented at cells 1, 2 and 3 respectively, while the other items are not presented. Note that in a wrapping list, the indices of the items are extended (modulo the number of items in the list). For instance, ..., -4, 3, 10, ... are all valid indices for item C in the above example.���The other situation occurs if there are less items in the ItemList as there are cells. This situation is depicted twice below. In this next example, WrapAround is False, i.e. the list is not wrapping:��� EMBED Word.Picture.6 ���

Figure 8/T.172 – Presentation of few elements when WrapAround is False

�This case is much like the first example only the window is bigger. Items B, C and D are presented at cells 1, 2 and 3 respectively, while item A is not presented. Cells 4 and 5 remain unused.���

�In the next example, WrapAround is True, i.e. the list is wrapping:��� EMBED Word.Picture.6 ���

Figure 9/T.172 – Presentation of few elements when WrapAround is True

�The important thing in this case is that there are two candidate cells to present item B. Since Visibles can have just one position, items can also just be presented in one cell. If according to the window an item can be presented at more than one cell, it will be presented only at the cell with the lowest index. In this case, item B will be presented at cell 1. Items C, D and A are presented at cells 2, 3 and 4 respectively. Cell 5 remains unused. Note that when the ���number of items is less than the number of cells, cells will remain unused, even if the list is wrapping.���Finally, any Integer value is allowed for FirstItem. In some cases, when WrapAround is False, it may occur that every cell is empty; such a case, where no Visible is displayed in the window, is allowed.

•	Integer.

•	Initial value: 1.��30.2	Events

This class has the same events as its base classes, with identical semantics. In addition, the following events are defined:

FirstItemPresented�This event is generated each time the presentation status of the first item in the ItemList changes. The associated value will reflect the new presentation status. The presentation status of the item can change if the FirstItem attribute is changed, or if the number of items in the list is changed.���•	Associated data, Boolean: True if the item is presented, False if it is not presented.

��LastItemPresented�This event is generated each time the presentation status of the last item in the ItemList changes. The associated value will reflect the new presentation status. The presentation status of the item can change if the FirstItem attribute is changed, or if the number of items in the list is changed.

•	Associated data, Boolean: True if the item is presented, False if it is not presented.���

HeadItems�This event is generated each time the number of items in the ItemList with an index in the range [1, FirstItem -1] changes. This number can change if the FirstItem attribute is changed, or if the number of items in the list is changed.

•	Associated data, Integer: the number of items in the ItemList with an index smaller than FirstItem.

��TailItems�This event is generated each time the number of items in the ItemList with an index in the range [FirstItem, number of items] changes. This number can change if the FirstItem attribute is changed, or if the number of items in the list is changed.

•	Associated data, Integer: the number of items in the ItemList with an index greater than or equal to FirstItem.

��ItemSelected�This event is generated if the ItemSelectionStatus of an item changes to True.

•	Associated data, Integer: the index of the item.

��ItemDeselected�This event is generated if the ItemSelectionStatus of an item changes to False.

•	Associated data, Integer: the index of the item.��30.3	Internal behaviours

This class defines the following internal behaviours:

Preparation�Execute the following sequence of actions:

1)	Apply the Preparation behaviour as inherited from the base class.

2)	Add each reference listed in the TokenGroupItems attribute to the ItemList. If a Visible is referenced more than once in the TokenGroupItems, it is added only once in the ItemList.

��Destruction�Execute the following sequence of actions:

1)	Reset all Visibles of the ListGroup to their OriginalPosition.

2)	Apply the Destruction behaviour as inherited from the base class.

��Activation�Execute the following sequence of actions:

1)	Apply the Activation behaviour as inherited from the base class.

2)	Apply the Update behaviour.

��Deactivation�Execute the following sequence of actions:

1)	Apply the Deactivation behaviour to all Visibles referenced in the ItemList.

2)	Apply the Deactivation behaviour as defined in the base class.

���

Update�Execute the following sequence of actions:

1)	For each item to be presented at a certain cell, set its Position (internal attribute) to the position defined for that cell. Subsequently, if the RunningStatus of the ListGroup is true, and the item is inactive, apply the Activation behaviour to it.

2)	For each item not to be presented set its position to its OriginalPosition attribute. Subsequently, if the RunningStatus of the ListGroup is true, and the item is active, apply the Deactivation behaviour to it.

��Additem�(Index, Item)�Execute the following sequence of actions:

1)	If the Visible referenced by the Item parameter is already in the ItemList, ignore this behaviour.

2)	If Index is less than 1 or greater than the current number of ItemList + 1, ignore this behaviour.���3)	Add the Item reference at position Index in the ItemList. (The item previously at position Index in the ItemList – if any – will now have index Index +1 and, similarly, every item of index greater than Index will now have an index incremented by one.)

4)	Apply the Update behaviour.

��Delitem�(Item)�Execute the following sequence of actions:

1)	If the Visible referenced by the Item parameter is not in the ItemList, ignore this action.

2)	Remove the reference indicated by the Item parameter from the ItemList. (The item index of the following items in ItemList will decrement by one.)

3)	Set the position of the referenced Visible to its OriginalPosition.

4)	Apply the Update behaviour.

��Select�(ItemIndex)�Execute the following sequence of actions:

1)	If ItemSelectionStatus of item with index ItemIndex is True, ignore this behaviour.

2)	If MultipleSelection is False, apply Deselect(Index) internal behaviour for any item with index Index, for which the ItemSelectionStatus is True.

3)	Set the ItemSelectionStatus of the item with index ItemIndex to True.

4)	Generate an ItemSelected event with ItemIndex as associated data.

���

Deselect�(ItemIndex)�Execute the following sequence of actions:

1)	If ItemSelectionStatus of item with index ItemIndex is False, ignore this behaviour.

2)	Set the ItemSelectionStatus of the item with index Index to False.

3)	Generate an ItemDeselected event with Index as associated data.

��30.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

AddItem �(ItemIndex, VisibleReference)�Apply the Additem(ItemIndex, VisibleReference) internal behaviour to add the reference to the Visible, as indicated by the VisibleReference parameter at the position indicated by the ItemIndex parameter.

Provisions of use:

•	The Target object shall be an available ListGroup object.�����•	VisibleReference shall refer to an available Visible object, which is not referred to by any reference in the ItemList.���Syntax description:�����AddItem�-->�Target,�����ItemIndex,�����VisibleReference���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger���VisibleReference�-->�GenericObjectReference�����DelItem�(VisibleReference)�Apply the Delitem(VisibleReference) internal behaviour to delete the reference to the Visible, as indicated by the VisibleReference parameter from the ItemList attribute, if it occurs in it. �����Provision of use:

•	The Target object shall be an available ListGroup object.

Syntax description:���DelItem�-->�Target,�����VisibleReference���Target�-->�GenericObjectReference���VisibleReference�-->�GenericObjectReference������

GetListItem�(ItemIndex, ItemRefVar)�Return the reference included in the ItemList attribute with the index specified by the ItemIndex parameter in the ObjectRefVariable referenced by ItemRefVar.

If WrapAround is False, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, ignore the action.

If WrapAround is True, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, the ItemIndex shall be interpreted modulo the number of items in the ItemList attribute.

Provisions of use:

•	The Target object shall be an available ListGroup object.

•	ItemRefVar shall refer to an active ObjectRefVariable object.

•	If WrapAround is False, ItemIndex shall be in the range [1, Number of items].�����Syntax description:�����GetListItem�-->�Target,�����ItemIndex,�����ItemRefVar���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger���ItemRefVar�-->�ObjectReference�����GetCellItem�(CellIndex, ItemRefVar)�Return the reference of the visible presented at the cell indicated by the CellIndex parameter in the ObjectRefVariable referenced by ItemRefVar.

If the CellIndex specifies an index smaller than or equal to 1 return the reference of the visible presented at the first cell. If the CellIndex specifies an index greater than or equal to the number of cells, return the reference of the visible presented in the last cell. If no visible is presented at the indicated cell, return NULL.�����NOTE – The GetTokenPosition action can be used to get the index of the cell which currently holds the token, as defined in the base class.

Provisions of use:

•	The Target object shall be an available ListGroup object.

•	ItemRefVar shall refer to an active ObjectRefVariable object.���

�Syntax description:���GetCellItem�-->�Target,�����CellIndex,�����ItemRefVar���Target�-->�GenericObjectReference���CellIndex�-->�GenericInteger���ItemRefVar�-->�ObjectReference�����GetItemStatus�(ItemIndex, ItemStatusVar)�Return the value of the ItemSelectionStatus attribute of the item in the ItemList with index ItemIndex in the BooleanVariable referenced by ItemStatusVar.

If WrapAround is False, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, ignore the action.

If WrapAround is True, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, the ItemIndex shall be interpreted modulo the number of items in the ItemList attribute.���Provisions of use:

•	The Target object shall be an available ListGroup object.

•	ItemRefVar shall refer to an active BooleanVariable object.

•	If WrapAround is False, ItemIndex shall be in the range [1, Number of items].���Syntax description:�����GetItemStatus�-->�Target,�����ItemIndex,�����ItemStatusVar���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger���ItemStatusVar�-->�ObjectReference�����SelectItem�(ItemIndex)�If WrapAround is False, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, ignore this action; otherwise:

If WrapAround is True, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, the ItemIndex shall be interpreted modulo the number of items in the ItemList attribute.

Apply the Select(ItemIndex) internal behaviour.

Provision of use:

•	The Target object shall be an available ListGroup object.���

�Syntax description:���SelectItem�-->�Target,�����ItemIndex���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger�����DeselectItem�(ItemIndex)�If WrapAround is False, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, ignore this action; otherwise:

If WrapAround is True, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, the ItemIndex shall be interpreted modulo the number of items in the ItemList attribute.

Apply the Deselect(ItemIndex) internal behaviour. �����Provision of use:

•	The Target object shall be an available ListGroup object.���Syntax description:�����DeselectItem�-->�Target,�����ItemIndex���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger�����ToggleItem�(ItemIndex)�If WrapAround is False, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, ignore this action, otherwise:

If WrapAround is True, and if the ItemIndex specifies an index smaller than 1 or greater than the number of items in the ItemList attribute, the ItemIndex shall be interpreted modulo the number of items in the ItemList attribute.���If the ItemSelectionStatus of the item indicated by ItemIndex is True, apply the Deselect(ItemIndex) internal behaviour, otherwise apply the Select(ItemIndex) internal behaviour.

Provision of use:

•	The Target object shall be an available ListGroup object.

Syntax description:���ToggleItem�-->�Target,�����ItemIndex,���Target�-->�GenericObjectReference���ItemIndex�-->�GenericInteger������

ScrollItems�(ItemsToScroll)�Add ItemsToScroll to the FirstItem attribute, and apply the Update behaviour.

Provision of use:

•	The Target object shall be an available ListGroup object.

Syntax description:���ScrollItems�-->�Target,�����ItemsToScroll���Target�-->�GenericObjectReference���ItemsToScroll�-->�GenericInteger�����SetFirstItem�(NewFirstItem)�Set the value of the FirstItem attribute to NewFirstItem. Apply the Update behaviour.

Provision of use:

•	The Target object shall be an available ListGroup object.���Syntax description:���SetFirstItem�-->�Target,�����NewFirstItem���Target�-->�GenericObjectReference���NewFirstItem�-->�GenericInteger�����GetFirstItem�(FirstItemVar)�Return the current value of the FirstItem attribute in the IntegerVariable referenced by FirstItemVar.

Provisions of use:

•	The Target object shall be an available ListGroup object. ���•	FirstItemVar shall refer to an active IntegerVariable object.

Syntax description:���GetFirstItem�-->�Target,�����FirstItemVar���Target�-->�GenericObjectReference���FirstItemVar�-->�ObjectReference�����GetListSize�(SizeVar)�Return the number of items in the ItemList in the IntegerVariable referenced by SizeVar.

Provisions of use:

•	The Target object shall be an available ListGroup object.

•	SizeVar shall refer to an active IntegerVariable object.���

�Syntax description:���GetListSize�-->�Target,�����SizeVar���Target�-->�GenericObjectReference���SizeVar�-->�ObjectReference��30.5	Formal description

ListGroup Class�-->�TokenGroup Class,����Positions,����WrapAround?,����MultipleSelection?��Positions�-->�Position*��Position�-->�XYposition,��WrapAround�-->�BOOLEAN��MultipleSelection�-->�BOOLEAN��31	Visible Class

Description:�Defines the behaviour of Presentables that have a visual representation on the screen��Base class:�Presentable��Subclasses:�Video, RTGraphics, Bitmap, LineArt, Text, Slider, Button��Status:�Abstract class��31.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

31.1.1	Inherited attributes

This class has all the attributes of its base class, with identical semantics.

31.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

OriginalBoxSize�Original size of the bounding box of the Visible object with respect to the coordinate system of the Scene. Size is given by a pair of Integers representing respectively the width (length along X-axis) and height (length along Y-axis) of the box.

Negative values shall not be used. Values exceeding the scene coordinate system are allowed; in that case only the part of the Visible within the scene coordinate system shall be rendered.

•	Pair of Integers (XBoxSize, YBoxSize).

���

OriginalPosition�Original position of the top left corner of the Visible with respect to the coordinate system of the Scene.

This is a set of (X, Y) coordinates expressing the original position of the top left corner of the visible in the coordinate system of the currently active Scene.���Negative values and values exceeding the scene coordinate system are allowed; in that case only the part of the Visible within the scene coordinate system shall be rendered.

•	Optional pair of Integers (XPosition, YPosition).

•	Default value: (0,0).

��OriginalPaletteRef�Indicate the initial Palette object that shall be used to render colours of the Visible object.

•	Optional reference to a Palette object.

•	Default value: No palette.

This attribute is mandatory when other colour attributes are set and need Palette references.��31.1.3	Own internal attributes

This class defines the following additional internal attributes:

BoxSize�Size of the bounding box of the Visible object with respect to the coordinate system of the Scene. Parts of the Visible that fall outside the borders of the bounding box shall not be rendered. If the Visible does not completely cover the contents of the bounding box, then the remaining parts of the bounding box shall be transparent.

•	Pair of Integers (XBoxSize, YBoxSize).

•	Initial value: Value of the OriginalBoxSize attribute. ��Position�Position of the top left corner of the Visible with respect to the coordinate system of the Scene. The Visible, when rendered, shall have its top left corner at this position.

•	Pair of Integers (XPosition, YPosition).

•	Initial value: Value of the OriginalPosition attribute.��PaletteRef�If a Palette is used, reference to the Palette object that shall be used to render colours of the Visible object.

The Palette attribute shall not be defined for classes specifying that OriginalPaletteRef shall not be encoded.

•	Optional reference to a Palette object.

•	Initial value: Value of the OriginalPaletteRef attribute. ��31.2	Events

This class has the same events as its base class, with identical semantics.

�31.3	Internal behaviours

This class has the same internal behaviours as its base class, with the following changes in semantics:

Preparation�Execute the following sequence of actions:

1)	Execute steps 1), 2) and 3) of the Preparation behaviour as defined in the Root class.

2)	If the Visible object is not referenced in the DisplayStack of the active Application object, add a reference to this Visible at the top of the DisplayStack.

3)	Execute steps 4), 5) and 6) of the Preparation behaviour as defined in the Root class.

��Destruction�Execute the following sequence of actions:

1)	If the Visible object is referenced in the DisplayStack of the active Application object, remove the reference to this Visible from the DisplayStack.

2)	Execute the Destruction behaviour as defined in the base class.

��Activation�Execute the following sequence of actions:

1)	Execute the Activation behaviour as defined in the base class.

2)	Display the Visible according to its position in the DisplayStack and to the position and the bounding box defined by the Position and BoxSize attributes.

3)	Set the RunningStatus to True and generate an IsRunning event.

��Deactivation�Execute the following sequence of actions:

1)	If the RunningStatus attribute of the object is False, ignore the behaviour; otherwise:

2)	Stop displaying the Visible.

3)	Execute Deactivation behaviour as defined in the base class. ��31.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetPosition�(NewXPosition, NewYPosition)�Change the location of the target Visible.

Execute the following sequence of actions:

1)	Set the Position attribute according to NewXPosition and NewYPosition.���

�2)	If the Visible object is active, redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.

Provisions of use:

•	The Target object shall be an available Visible object.

•	NewXPosition and NewYPosition shall correspond to a location interpreted in the Scene coordinate system defined by the SceneCoordinateSystem attribute of the currently active Scene.

Syntax description:���SetPosition�-->�Target,�����NewXPosition,�����NewYPosition���Target�-->�GenericObjectReference���NewXPosition�-->�GenericInteger���NewYPosition�-->�GenericInteger�����GetPosition�(XpositionVar, YPositionVar)�Return the location of the target Visible.

Set the Variables referenced by XPositionVar and YPositionVar to the value of the X and Y positions of the target Visible respectively.

Provisions of use:

•	The Target object shall be an available Visible object.

•	XpositionVar and YPositionVar shall refer to active IntegerVariable objects. ���Syntax description:���GetPosition�-->�Target,�����XPositionVar,�����YPositionVar���Target�-->�GenericObjectReference���XpositionVar�-->�ObjectReference���YpositionVar�-->�ObjectReference�����SetBoxSize�(XNewBoxSize, YNewBoxSize)�Change the size of the bounding box of the target Visible.

Execute the following sequence of actions:

1)	Set the BoxSize attribute.

2)	Redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.���

�Provisions of use:

•	The Target object shall be an available Visible object.

•	XnewBoxSize and YNewBoxSize shall be positive values and different from 0.

Syntax description:���SetBoxSize�-->�Target,�����XNewBoxSize,�����YNewBoxSize���Target�-->�GenericObjectReference���XNewBoxSize�-->�GenericInteger���YNewBoxSize�-->�GenericInteger�����GetBoxSize�(XboxSizeVar, YboxSizeVar)�Return the size of the bounding box of the target Visible.

Set the Variables referenced by XBoxSizeVar and YBoxSizeVar to the value of the X and Y positions of the target Visible respectively.���Provisions of use:

•	The Target object shall be an available Visible object.

•	XboxSizeVar and YBoxSizeVar shall refer to active IntegerVariable objects.���Syntax description:���GetBoxSize�-->�Target,�����XBoxSizeVar,�����YBoxSizeVar���Target�-->�GenericObjectReference���XBoxSizeVar�-->�ObjectReference���YBoxSizeVar�-->�ObjectReference�����BringToFront�Put a Visible at the foreground of the screen.

Execute the following sequence of actions:

1)	If the target Visible object is not referenced in the DisplayStack of the active Application object, ignore this action.

2)	If the target Visible object is referenced in the DisplayStack of the active Application object, move the reference to this Visible at the top of the DisplayStack.

3)	If the target Visible object is active, redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.���

�Provision of use:

•	The Target object shall be an available Visible object.

Syntax description:���BringToFront�-->�Target���Target�-->�GenericObjectReference�����SendToBack�Put a Visible at the background of the screen.

Execute the following sequence of actions:

1)	If the target Visible object is not referenced in the DisplayStack of the active Application object, ignore this action.

2)	If the target Visible object is referenced in the DisplayStack of the active Application object, move the reference to this Visible at the bottom of the DisplayStack.���3)	If the target Visible object is active, redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.���Provision of use:

•	The Target object shall be an available Visible object.

Syntax description:���SendToBack�-->�Target���Target�-->�GenericObjectReference�����PutBefore (ReferenceVisible)�Put a Visible exactly in front of another Visible in the display stack.

Execute the following sequence of actions:

1)	If the target Visible object is not referenced in the DisplayStack of the active Application object, ignore this action.

2)	If the target Visible object is referenced in the DisplayStack of the active Application object, move the reference to this Visible at the position exactly before the reference to the ReferenceVisible in the DisplayStack.

3)	If the target Visible object is active, redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.���� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�0/T.172 – Effect of PutBefore action

�Provisions of use:

•	The Target object shall be an available Visible object.

•	ReferenceVisible shall be a reference to an available Visible object.

•	The DisplayStack of the active Application object shall contain a reference to the ReferenceVisible object.���Syntax description:���PutBefore�-->�Target,�����ReferenceVisible���Target�-->�GenericObjectReference���ReferenceVisible�-->�GenericObjectReference�����PutBehind (ReferenceVisible)�Put a Visible exactly below another Visible in the display stack.

Execute the following sequence of actions:

1)	If the target Visible object is not referenced in the DisplayStack of the active Application object, ignore this action.

2)	If the target Visible object is referenced in the DisplayStack of the active Application object, move the reference to this Visible at the position exactly after the reference to the ReferenceVisible in the DisplayStack.

3)	If the target Visible object is active, redraw the graphic widget representing the object on the screen in the bounding box defined by the BoxSize and Position attributes and according to its position in the DisplayStack of the active Application object.��� EMBED Word.Picture.6 ���

Figure 11/T.172 – Effect of PutBehind action

�

�Provisions of use:

•	The Target object shall be an available Visible object.

•	ReferenceVisible shall be set or refer to a reference to an available Visible object.

•	The DisplayStack of the active Application object shall contain a reference to the ReferenceVisible object.���Syntax description:���PutBehind�-->�Target,�����ReferenceVisible���Target�-->�GenericObjectReference���ReferenceVisible�-->�GenericObjectReference�����SetPaletteRef�(NewPaletteRef)�Change the colour look-up table used to render colours of the Visible object.

Execute the following sequence of actions:

1)	Set PaletteRef of the target Visible to NewPaletteRef.

2)	If the target Visible is active, redraw the Visible by taking into account the new value of PaletteRef.

Provisions of use:

•	The Target object shall be an available Visible object.

•	NewPaletteRef shall contain a reference to an active Palette object.

Syntax description:���SetPaletteRef�-->�Target,�����NewPaletteRef���Target�-->�GenericObjectReference���NewPaletteRef�-->�GenericObjectReference��31.5	Formal description

Visible Class�-->�Presentable class,����OriginalBoxSize,����OriginalPosition?,����OriginalPaletteRef?��OriginalBoxSize�-->�XLength, Ylength��Xlength�-->�INTEGER��Ylength�-->�INTEGER��OriginalPosition�-->�XYPosition��OriginalPaletteRef�-->�ObjectReference���32	Bitmap Class

Description:�Defines the behaviour of a two-dimensional array of pixels��Base class:�Visible��Subclasses:�None��Status:�Concrete class��32.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

32.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�Either this attribute or its corresponding default attribute in the Application class (BitmapContentHook) is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��32.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Tiling�When true, this attribute indicates that the bitmap should be replicated (tiled) in the available BoxSize of the bitmap.

•	Optional Boolean.

•	Default value: False.

��Original Transparency�This attribute defines the initial transparency of those pixels of the bitmap that are marked as being transparent.

In cases where the coded representation of the bitmap itself defines the value of the Transparency, the transparency defined by content encoding and the transparency defined by this attribute should be combined. The exact algorithm is not defined by this Recommendation.

•	Optional Integer in the range [0, 100] (percent).

•	Default value: 0%.��32.1.3	Own internal attributes

This class defines the following additional internal attribute:

Transparency�Defines the transparency of those pixels of the bitmap that are marked as being transparent.

•	Optional Integer in the range [0, 100] (percent).

•	Initial value: Value of the OriginalTransparency attribute.���32.2	Events

This class has the same events as its base class, with identical semantics.

32.3	Internal behaviours

This class has the same behaviours as its base class, with identical semantics.

32.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

In addition, the following applicable MHEG-5 actions are defined:

ScaleBitmap�(Xscale, YScale)�If the MHEG-5 engine implements the Scaling option, the effect of this action is to scale the contents of the Bitmap to the size (XScale, YScale). Engines that do not implement the scaling option shall ignore this action.

Note that this action does not affect the BoxSize internal attribute of the Bitmap object; in other words, the Bitmap is scaled, but its bounding box remains the same.

Provisions of use:

•	The Target object shall be an available Bitmap object.

•	XScale and YScale shall be positive Integers.

Syntax definition:���ScaleBitmap�-->�Target,�����XScale, Yscale���Target�-->�GenericObjectReference���XScale, Yscale�-->�GenericInteger�����SetTransparency�(NewTransparency)�Execute the following sequence of actions:

1)	Change the value of the Transparency attribute.

2)	If the bitmap is active, redraw it using the new value of the Transparency attribute, according to its position in the DisplayStack of the active Application object.

Provisions of use:

•	The Target object shall be an available Bitmap object.

•	NewTransparency is set within the range [0, 100].

Syntax definition:���ScaleBitmap�-->�Target,�����NewTransparency���Target�-->�GenericObjectReference���NewTransparency�-->�GenericInteger���32.5	Formal description

Bitmap Class�-->�Visible Class,����Tiling?,����OriginalTransparency?��Tiling�-->�BOOLEAN��OriginalTransparency�-->�INTEGER��33	LineArt Class

Description:�Defines functionality associated with vectorial representation of graphical objects��Base class:�Visible��Subclasses:�Rectangle, DynamicLineArt��Status:�Concrete class��33.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

33.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�Either this attribute or its corresponding default attribute in the Application class (LineArtContentHook) is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��33.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

BorderedBoundingBox�The BorderedBoundingBox attribute determines whether the bounding box – defined by BoxSize and Position attributes – is bordered by lines or not. When this attribute is set to True, all further drawings shall take place inside the border and shall not be drawn on top of it. OriginalLineWidth, OriginalLineStyle and OriginalRefLineColour shall be used for the rendering of the bounding box.

•	Optional Boolean attribute.

•	Default value: True. ��OriginalLineWidth�The OriginalLineWidth attribute determines the original line width of the graphic object including the bounding box.

The OriginalLineWidth attribute is expressed in pixels in the scene coordinate space. It is specified in pixel height for horizontal lines and in pixel width for vertical lines. ���

�The actual rendering resolution and accuracy of the MHEG-5 engine is outside the scope of this Recommendation.

•	Optional Integer attribute.

•	Default value: 1. ��OriginalLineStyle�The OriginalLineStyle attribute determines the pattern used for the rendering of the lines of the LineArt object. ���•	Optional Integer attribute – One of 1, 2 or 3;

1 means solid, 2 means dashed, 3 means dotted.

•	Default value: 1 (solid).��OriginalRefLineColour�Initial reference colour for the lines used to render the LineArt object.

The OriginalRefLineColour attribute value is expressed either as a string representing an absolute colour value or as an Integer representing a zero-based index in a colour look-up table. In the latter case, the OriginalPaletteRef attribute must contain a reference to a Palette object that is then used to translate the index to an actual colour value.

The encoding of absolute colour values as well as the actual colour resolution in the rendering process are outside the scope of this Recommendation.

•	Optional attribute.

•	Default value: "black".

	The exact appearance on screen of default value "black" is not fully specified in this subclause.

•	OctetString or Integer. ��OriginalRefFillColour�Initial reference colour for the inside of a closed LineArt object.

The OriginalRefFillColour attribute value is expressed either as a string representing an absolute colour value or as an Integer representing a zero-based index in a colour look-up table. In the latter case, the OriginalPaletteRef attribute must contain a reference to a Palette object that is then used to translate the index to an actual colour value.

If the OriginalRefFillColour is not encoded, a LineArt object that represents a closed shape shall be rendered with a transparent fill colour.

The encoding of absolute colour values as well as the actual colour resolution in the rendering process are outside the scope of this Recommendation.

•	Optional attribute.

•	Default value: "transparent".

•	OctetString or Integer.���33.1.3	Own internal attributes

This class defines the following additional internal attributes:

LineWidth�The LineWidth attribute determines the line width of the graphical objects that are drawn by the graphical actions.

•	Integer.

•	Initial Value: OriginalLineWidth.

��LineStyle�Width of the line that the LineArt object is intended to be rendered with.

•	One of 1, 2 or 3;

1 means solid, 2 means dashed, 3 means dotted.

•	Initial Value: OriginalLineStyle.

��RefLineColour�Reference colour for the lines used to render the LineArt object.

•	OctetString or Integer.

•	Initial Value: OriginalRefLineColour.

��RefFillColour�Reference colour for the background colour used to render the LineArt object.

•	OctetString or Integer.

•	Initial Value: OriginalRefFillColour.��33.2	Events

This class has the same events as its base class, with identical semantics.

33.3	Internal behaviours

This class defines no additional internal attribute.

33.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetLineWidth�(NewLineWidth)�Change the width of lines of a LineArt object.

Execute the following sequence of actions:

1)	Set the value of the LineWidth attribute to NewLineWidth.

2)	If the target LineArt object is active, redraw immediately the target object by taking into account the new value of the LineWidth attribute and according to its position in the DisplayStack of the active Application object.���

�Provisions of use:

•	The Target object shall be an available LineArt object.

•	NewLineWidth shall be set or refer to a positive integer value. ���Syntax description:���SetLineWidth�-->�Target,�����NewLineWidth���Target�-->�GenericObjectReference���NewLineWidth�-->�GenericInteger�����SetLineStyle�(NewLineStyle)�Change the line style of a LineArt object.

Execute the following sequence of actions:

1)	Set the value of the LineStyle attribute to NewLineStyle.

2)	If the target LineArt object is active, redraw immediately the target object by taking into account the new value of the LineStyle attribute and according to its position in the DisplayStack of the active Application object.

Provisions of use:

•	The Target object shall be an available LineArt object.

•	NewLineStyle shall be set or refer to a positive integer value: 1, 2 or 3.���Syntax description:���SetLineStyle�-->�Target,�����NewLineStyle���Target�-->�GenericObjectReference���NewLineStyle�-->�GenericInteger�����SetLineColour�(NewColour)�Change the colour of lines of a LineArt object.

Execute the following sequence of actions:

1)	Set the value of the RefLineColour attribute to NewColour.

2)	If the target object is active, redraw immediately the target object by taking into account the new value of the LineWidth attribute and according to its position in the DisplayStack of the active Application object.

NewColour may be either an absolute colour value or the zero-based index of a colour in the look-up table referenced by the PaletteRef attribute.

Provisions of use:

•	The Target object shall be an available LineArt object.

•	If RefLineColour is currently set to an absolute colour value, NewColour shall be set or refer to an absolute colour value. ���

�•	If RefLineColour is currently set to an index of a colour look-up table, NewColour shall be set or refer to an index of a colour look-up table.���Syntax description:���SetLineColour�-->�Target,�����NewColour���Target�-->�GenericObjectReference���NewColour�-->�NewColourIndex | NewAbsoluteColour���NewColourIndex�-->�GenericInteger���NewAbsoluteColour�-->�GenericOctetString�����SetFillColour�(NewColour)�Change the fill-in colour of a LineArt object.

Execute the following sequence of actions:

1)	Set the value of the RefFillColour attribute to NewColour.

2)	If the target object is active, redraw immediately the target object by taking into account the new value of the RefFillColour attribute and according to its position in the DisplayStack of the active Application object.

NewColour may be either an absolute colour value or the zero-based index of a colour in the look-up table referenced by the PaletteRef attribute.

If NewColour is not encoded, the RefFillColour attribute shall be set to "transparent".���Provisions of use:

•	The Target object shall be an available LineArt object.

•	If RefFillColour is not currently set, NewColour shall be set or refer to an absolute colour value.

•	If RefFillColour is currently set to an absolute colour value, NewColour shall be set or refer to an absolute colour value.

•	If RefFillColour is currently set to an index of a colour look-up table, NewColour shall be set or refer to an index of a colour look-up table.

Syntax description:���SetFillColour�-->�Target,�����NewColour?���Target�-->�GenericObjectReference���NewColour�-->�NewColourIndex | NewAbsoluteColour���NewColourIndex�-->�GenericInteger���NewAbsoluteColour�-->�GenericOctetString���33.5	Formal description

LineArt Class�-->�Visible Class,����BorderedBoundingBox?,����OriginalLineWidth?,����OriginalLineStyle?,����OriginalRefLineColour?,����OriginalRefFillColour?��BorderedBoundingBox�-->�BOOLEAN��OriginalLineWidth�-->�INTEGER��OriginalLineStyle�-->�INTEGER��OriginalRefLineColour�-->�Colour��OriginalRefFillColour�-->�Colour��34	Rectangle Class

Description:�Defines a data structure that deals with rectangles��Base class:�LineArt��Subclasses:�None��Status:�Concrete class��34.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

34.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��BoxSize, Position�Visible�In addition to defining the bounding box for the Rectangle, these attributes also define the size of the Rectangle itself. The Rectangle’s size shall be such that it precisely fits inside its bounding box. This means that the borders of the Rectangle occupy LineWidth pixels on the inside of the Rectangle’s bounding box. ��BorderedBoundingBox�LineArt�This attribute shall not be encoded for this class. It shall always be interpreted as True.

Unlike for its parent class, the BorderedBoundingBox of a Rectangle (i.e. the shape of the Rectangle) shall be drawn using LineWidth, LineStyle and RefLineColour, rather than OriginalLineWidth, OriginalLineStyle and OriginalRefLineColour.��34.1.2	Own exchanged attributes

This class defines no additional exchanged attributes.

�34.1.3	Own internal attributes

This class defines no additional internal attributes.

34.2	Events

This class has the same events as its base class, with identical semantics.

34.3	Internal behaviours

The internal behaviours of this class are the same as those of its base class, with identical semantics.

34.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics.

34.5	Formal description

Rectangle Class�-->�LineArt Class��35	DynamicLineArt Class

Description:�Defines means to dynamically draw vectorial graphical objects��Base class:�LineArt��Subclasses:�None��Status:�Concrete Class��35.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

35.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��35.1.2	Own exchanged attributes

This class defines no additional exchanged attributes.

35.1.3	Own internal attributes

This class defines no additional internal attributes.

35.2	Events

This class has the same events as its base class, with identical semantics.

35.3	Internal behaviours

This class defines no additional internal behaviour.

�35.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetBoxSize�This action redraws the DynamicLineArt object with its new size and cleared of all of its previous drawings, that is filled with OriginalRefFillColour (in the particular case where the new size is exactly the old size, this action is similar to a Clear action).

When BorderedBoundingBox is set to True, the border is redrawn.

��SetPosition, BringToFront, SendToBack, PutBefore, PutBehind

�After each of these actions, the DynamicLineArt widget is and cleared of all of its previous drawings, that is filled with OriginalRefFillColour.

When BorderedBoundingBox is set to True, the border is redrawn.��SetLineWidth�Setting a new value of LineWidth shall not modify line width of all existing graphics from the DynamicLineArt object; it shall be used to render the next graphics to be drawn.

��SetLineStyle�Setting a new value of LineStyle shall not modify line style of all existing graphics from the DynamicLineArt object; it shall be used to render the next graphics to be drawn.

��SetLineColour�Setting a new value of RefLineColour shall not modify the colour of all existing graphics from the DynamicLineArt object; it shall be used to render the next graphics to be drawn.

��SetFillColour�Setting a new value of RefFillColour shall not modify colour of all existing graphics from the DynamicLineArt object; it shall be used to render the next graphics to be drawn.

��GetLineWidth�(LineWidthVar)�Return the current LineWidth in the variable LineWidthVar.

Provisions of use:

•	LineWidthVar shall refer to an active IntegerVariable object.

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���GetLineWidth�-->�Target,�����LineWidthVar���Target�-->�GenericObjectReference���LineWidthVar�-->�ObjectReference���

GetLineStyle�(LineStyleVar)�Return the current LineStyle into the variable LineStyleVar.

Provisions of use:

•	LineStyleVar shall refer to an active IntegerVariable object.

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���GetLineStyle�-->�Target,�����LineStyleVar���Target�-->�GenericObjectReference���LineStyleVar�-->�ObjectReference�����GetLineColour�(LineColourVar)�Return the current LineColour in the variable LineColourVar.

Provisions of use:

•	LineColourVar shall refer to an active OctetStringVariable object if the RefLineColour is specified as an OctetString. LineColourVar shall refer to an active IntegerVariable object if the RefLineColour is specified as an Integer.

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���GetLineColour�-->�Target,�����LineColourVar���Target�-->�GenericObjectReference���LineColourVar�-->�ObjectReference�����GetFillColour�(FillColourVar)�Return the current RefFillColour in the variable FillColourVar.

Provisions of use:

•	FillColourVar shall refer to an active OctetStringVariable object if the RefFillColour is specified as an OctetString. FillColourVar shall refer to an active IntegerVariable object if the RefFillColour is specified as an Integer.

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���GetFillColour�-->�Target,�����FillColourVar���Target�-->�GenericObjectReference���FillColourVar�-->�ObjectReference������

DrawArc�(X, Y, EllipseWidth, EllipseHeight, StartAngle, ArcAngle)�Draw an arc between StartAngle and StartAngle + ArcAngle (arc BC in Figure 12 below).

Arc is drawn in LineColour.

Point X, Y is relative to the Position attribute of the object. That is to say that X=0, Y=0 corresponds to the top left corner of the bounding box. Values of X and Y outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Angles are expressed in 64ths of degrees and are in the interval �[0, 23039]. ArcAngle shall not be 0. ��� EMBED Word.Picture.6 ���

Figure 12/T.172 – Illustration of drawing parameters

�Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���DrawArc�-->�Target,�����X,�����Y,�����EllipseWidth,�����EllipseHeight,�����StartAngle,�����ArcAngle���Target�-->�GenericObjectReference���X�-->�GenericInteger���Y�-->�GenericInteger���EllipseWidth�-->�GenericInteger���EllipseHeight�-->�GenericInteger���StartAngle�-->�GenericInteger���ArcAngle�-->�GenericInteger���

DrawSector�(X, Y, EllipseWidth, EllipseHeight, StartAngle, ArcAngle)�Draw a sector between StartAngle and StartAngle + ArcAngle (the surface ABC in Figure 12 above).

Lines are drawn with RefLineColour and the surface is filled up with RefFillColour.

Point X, Y is relative to the Position attribute of the object. That is to say that X=0, Y=0 corresponds to the top left corner of the bounding box. Values of X and Y outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Angles are expressed in 64ths of degrees and are in the interval �[0, 23039]. ArcAngle shall not be 0.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.���Syntax description:�����DrawSector�-->�Target,�����X,�����Y,�����EllipseWidth,�����EllipseHeight,�����StartAngle,�����ArcAngle���Target�-->�GenericObjectReference���X�-->�GenericInteger���Y�-->�GenericInteger���EllipseWidth�-->�GenericInteger���EllipseHeight�-->�GenericInteger���StartAngle�-->�GenericInteger���ArcAngle�-->�GenericInteger�����DrawLine�(X1, Y1, X2, Y2)�Draw a line between (X1, Y1) and (X2, Y2)

Points X1, Y1 and X2, Y2 are relative to the Position attribute of the object. Values outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.���

�Syntax description:�����DrawLine�-->�Target,�����X1,�����Y1,�����X2,�����Y2���Target�-->�GenericObjectReference���X1�-->�GenericInteger���Y1�-->�GenericInteger���X2�-->�GenericInteger���Y2�-->�GenericInteger�����DrawOval�(X, Y, EllipseWidth, EllipseHeight)�Draw an ellipse bounded by the rectangle defined by the parameters (see Figure 12 above).

This ellipse is filled up with RefFillColour.

Point X, Y is relative to the Position attribute of the object. That is to say that X=0, Y=0 corresponds to the top left corner of the bounding box. Values of X and Y outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���DrawOval�-->�Target,�����X,�����Y,�����EllipseWidth,�����EllipseHeight���Target�-->�GenericObjectReference���X�-->�GenericInteger���Y�-->�GenericInteger���EllipseWidth�-->�GenericInteger���EllipseHeight�-->�GenericInteger�����DrawPolygon�(PointList)�Draw a closed polygon.

This polygon is filled up with RefFillColour.

PointList is a list of Point.���

�A Point is defined by X and Y coordinates relative to the Position attribute of the object. Values of X and Y outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���DrawPolygon�-->�Target,�����PointList���Target�-->�GenericObjectReference���PointList�-->�Point+���Point�-->�X,�����Y���X�-->�GenericInteger���Y�-->�GenericInteger�����DrawPolyline�(PointList)�Draw series of joint lines.

PointList is a list of Point.

A Point is defined by X and Y coordinates relative to the Position attribute of the object. Values of X and Y outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���DrawPolyline�-->�Target,�����PointList���Target�-->�GenericObjectReference���PointList�-->�Point+���Point�-->�X,�����Y���X�-->�GenericInteger���Y�-->�GenericInteger�����DrawRectangle�(X1, Y1, X2, Y2)�Draw a rectangle.

This rectangle is filled up with RefFillColour.

Top Left point is (X1, Y1) and Bottom Right point is (X2, Y2). (X1, Y1) and (X2, Y2) are relative to the Position attribute of the object. Values outside of the bounding box are allowed, but only the part of the drawing within the bounding box shall be rendered.���

�Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���DrawRectangle�-->�Target,�����X1,�����Y1,�����X2,�����Y2���X1�-->�GenericInteger���Y1�-->�GenericInteger���X2�-->�GenericInteger���Y2�-->�GenericInteger�����Clear

�Fill up the bounding box with the OriginalRefFillColour.

When BorderedBoundingBox is set to True, the border is not filled with OriginalRefFillColour.

Provision of use:

•	The Target object shall be an available DynamicLineArt object.

Syntax description:���Clear�-->�Target���Target�-->�GenericObjectReference��35.5	Formal description

DynamicLineArt Class�-->�LineArt Class��36	Text Class

Description:�Defines attributes and behaviour of pieces of textual information��Base class:�Visible��Subclasses:�EntryField, HyperText��Status:�Concrete class��36.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

�36.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�Either this attribute or its corresponding default attribute in the Application class (TextContentHook) is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class.��36.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

OriginalFont�Indication of which font to use when initially presenting the Text object.

The OriginalFont attribute represents either a name for a font (which is resident in the MHEG-5 engine) or a reference to a Font object. In both cases, the indicated font shall be used for rendering the Text object.

When no font reference is encoded, the Text object shall be presented using the default font referenced in the active Application object; if no font is referenced there, a default font of the MHEG-5 engine shall be used.

NOTE – The OriginalFont attribute provides the initial font for a Text object. In addition, the text encoding format may contain escape sequences to switch between fonts.

•	Optional attribute.

•	OctetString representing a FontName, or reference to a Font object.

•	Default value: Value encoded by Application.

��FontAttributes�This attribute is used to set specific Font attributes such as style, character size, text colour and background colour.

The exact encoding format of the FontAttributes attribute is related to the value of the type of Font object mentioned by the Font attribute.

When no FontAttributes is encoded, the Text object shall be presented using the default FontAttributes encoded in the active Application object, if no FontAttributes is referenced there, no specific attributes are set. ���•	Optional OctetString.

•	Default value: Value encoded by Application.

��TextColour�Indicate which colour should be used to render the foreground of the text object. This attribute is interpreted as a zero-based index in the colour look-up table defined by the PaletteRef attribute, or as a direct colour value, depending on the attribute type.���

�•	Optional Integer or OctetString. An Integer will be interpreted as an index in a Palette; an OctetString will be interpreted as a direct colour value.

•	Default value: Value encoded by Application.

���BackgroundColour�Indicate which colour should be used to render the background of the text object. This attribute is interpreted as a zero-based index in the colour look-up table defined by the PaletteRef attribute, or as a direct colour value, depending on the attribute type.

•	Optional Integer or OctetString. An Integer will be interpreted as an index in a Palette; an OctetString will be interpreted as a direct colour value.

•	Default value: Value encoded by Application.

��CharacterSet�Identification of the character set, or set of character sets, that shall be used by default for Text rendering. This Integer shall be encoded with a value representing the character set. The application domain shall define a range of CharacterSet and its semantics.

NOTE – The CharacterSet attribute provides the initial character set for a Text object. In addition, the text encoding format may contain escape sequences to switch between character sets.

•	Optional Integer.

•	Default value: The value of CharacterSet attribute from the Application object, if that attribute is specified.

��HorizontalJustification�The HorizontalJustification attribute indicates how the text lines are justified relative to the vertical edges of the bounding box defined by the BoxSize and Position attributes of the Text object.

This attribute may be ignored if a coded representation of the text itself has the same functionality to specify this type of rendering. The application domain based on this Recommendation shall define each ContentHook for which the attribute is ignored.

•	Optional attribute – One of start | end | centre | justified.

•	Default value: start.

��VerticalJustification�The VerticalJustification attribute indicates how the text lines are justified relatively to the horizontal edges of the bounding box defined by the BoxSize and Position attributes of the Text object. ���This attribute may be ignored if a coded representation of the text itself has the same functionality to specify this type of rendering. The application domain based on this Recommendation shall define each ContentHook for which the attribute is ignored.

•	Optional attribute – One of start | end | centre | justified.

•	Default value: start.���

LineOrientation�The LineOrientation attribute is combined with the StartCorner attribute to determine the way characters are organised into lines, and lines into sequences of lines.

This attribute may be ignored if a coded representation of the text itself has the same functionality to specify this type of rendering. The application domain based on this Recommendation shall define each ContentHook for which the attribute is ignored.

•	Optional attribute – One of vertical | horizontal.

•	Default value: horizontal.

NOTE – For vertical line orientation, the character orientation is supposed to be normal (i.e. the entire line is rotated 90 degrees from horizontal), unless the contents of the Text specify otherwise.

��StartCorner�The StartCorner attribute contains an identification of the corner of the presentation area where the text rendering should start.

This attribute may be ignored if a coded representation of the text itself has the same functionality to specify this type of rendering. The application domain based on this Recommendation shall define each ContentHook for which the attribute is ignored.

•	Optional attribute – One of upper-left | upper-right | lower-left | lower-right.

•	Default value: upper-left.

��TextWrapping�Indicate whether the text is wrapped at the end of the line, or whether it is clipped.

If the TextWrapping attribute is set to True, the text is wrapped. If it is set to False, it is clipped.

This attribute may be ignored if a coded representation of the text itself has the same functionality to specify this type of rendering. The application domain based on this Recommendation shall define each ContentHook for which the attribute is ignored.

•	Optional Boolean.

•	Default value: False.��36.1.3	Own internal attributes

This class defines the following additional internal attributes:

TextData�Value of the textual content data of the Text object.

If the Content attribute of the Text object is an IncludedContent, TextData is initially set to IncludedContent.���

�If the Content attribute of the Text object is a reference to an external data source, TextData is initially set to an OctetString representing the content of this external data source. In this case, the value of the ContentHook attribute might be used to format the value of TextData.

•	OctetString.

•	Initial value: IncludedContent or the content of a ReferencedContent.

��Font�Font to use when presenting the Text object.

The Font attribute represents either a name for a font (which is resident in the MHEG-5 engine) or a reference to a Font object. In both cases, the indicated font shall be used for rendering the Text object.

NOTE – The Font attribute provides the initial font for a Text object. In addition, the text encoding format may contain escape sequences to switch between fonts.

•	Optional attribute.

•	OctetString representing a FontName, or reference to a Font object.

•	Initial value: Value of the OriginalFont attribute.��36.2	Events

This class has the same events as its base class, with identical semantics.

36.3	Internal behaviours

The internal behaviours of this class have the same semantics as for its base class.

36.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics, except for SetData. In addition, the following applicable MHEG-5 actions are defined:

SetData�Execute synchronously the following actions:

1)	Update the value of the TextData internal attribute of the target Text.

2)	Execute the SetData action as defined in the Presentable class.

Provisions of use and syntax description are provided in the Ingredient class.

��GetTextContent�(TextContentVar)�Set the Variable referenced by TextContentVar to the value of the Content attribute.

NOTE – If the Content attribute of the Text object is included, TextContentVar returns the text OctetString; if the Content attribute of the Text object is referenced, TextContentVar returns that object reference.

Provisions of use:

•	TextContentVar shall refer to an active OctetStringVariable object or an active ContentRefVariable object.

•	The Target object shall be an available Text object.���

�Syntax description:���GetTextContent�-->�Target,�����TextContentVar���Target�-->�GenericObjectReference���TextContentVar�-->�ObjectReference�����GetTextData�(TextDataVar)�Set the Variable referenced by TextDataVar to the value of the TextData attribute.

Provisions of use:

•	TextDataVar shall refer to an active OctetString object.

•	The Target object shall be an available Text object.�� �Syntax description:���GetTextData�-->�Target,�����TextDataVar���Target�-->�GenericObjectReference���TextDataVar�-->�ObjectReference�����SetFontRef�(NewFont)�Change the character font used to present a text.

Execute the following sequence of actions:

1)	Set the value of the Font attribute to NewFont.

2)	If the target Text object is active, redraw the target object immediately by taking into account the new value of Font and according to its position in the DisplayStack of the active Application object.

NewFont might be a reference to a Font object or a font name. This Recommendation does not define how font names are managed by the MHEG-5 engine. ���Provisions of use:

•	The Target object shall be an available Text object.

•	If NewFont references a Font object, this Font object shall be available. ���Syntax description:���SetFontRef�-->�Target,�����NewFont���Target�-->�GenericObjectReference���NewFont�-->�NewFontName | NewFontReference���NewFontName�-->�GenericOctetString���NewFontReference�-->�GenericObjectReference���36.5	Formal description

Text Class�-->�Visible Class,����OriginalFont?,����FontAttributes?,����TextColour?,����BackgroundColour?,����CharacterSet?,����HorizontalJustification?,����VerticalJustification?,����LineOrientation?,����StartCorner?,����TextWrapping?��OriginalFont�-->�OctetString | ObjectReference��FontAttributes�-->�OctetString��TextColour�-->�Colour��BackgroundColour�-->�Colour��CharacterSet�-->�INTEGER��HorizontalJustification �-->�start | end | centre | justified��VerticalJustification�-->�start | end | centre | justified��LineOrientation�-->�vertical | horizontal��StartCorner�-->�upper-left | upper-right | lower-left | lower-right��TextWrapping�-->�BOOLEAN��37	Stream Class

Description:�Defines the behaviour of a composition of continuous media (Video, Audio and RTGraphics) that are presented in synchronization��Base class:�Presentable��Subclasses:�None��Status:�Concrete class��37.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

37.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�Either this attribute or its corresponding default attribute in the Application class (StreamContentHook) is mandatory for this class.��OriginalContent�Ingredient�This attribute is mandatory for this class. It contains a reference to a whole multiplex of synchronised media.���37.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Multiplex�List of inclusion of Video, Audio and RTGraphics objects that are intended to be presented simultaneously. These are called StreamComponents below. Each stream component has a tag, which is used to identify it uniquely within the stream.

The InitiallyActive attribute of each StreamComponent determines whether the corresponding elementary stream is automatically played as a result of the Stream multiplex being activated for the first time.

Note that all behaviour associated with synchronization is always accessed via the Stream class; for example, it is not possible to target the SetCounterPosition action to an Audio object.

•	Sequence of inclusions of Video, Audio and RT-Graphics objects.

��Storage�Indicate whether the composition of continuous media is loaded into memory before rendering or if it is presented directly off the stream coming, for instance, from a server. For the MHEG-5 engine, the difference in handling is that in the memory case, the MHEG-5 engine shall synchronise the stream, whereas in the stream case, the stream is synchronised by the server.

•	Optional attribute – One of memory | stream.

•	Default value: stream.

��Looping�Number of performances of the Stream object.

In the counting of loops, actual counting takes place as the Stream reaches its end. As a result SetCounterPosition action shall be interpreted in a given loop.

When a Stream is played and stopped before all the loops are done, the next play action shall continue from that loop (and from that CounterPosition, unless it is set by a specific action); in other words, the attribute Looping shall represent the total number of loops. ���When a Stream has reached the end of all loops and is stopped, a new activation shall play the Stream as if it were activated for the first time, that is, looping according to the Looping attribute. ���•	Optional Integer.

•	Default value: 1.

•	Special value: 0 means infinity.��37.1.3	Own internal attributes

This class defines the following additional internal attributes:

Speed�Rate at which the composition of continuous media is presented.

The Speed attribute is a rational number, represented as two Integers (a, b). Speed is defined as a/b. The semantics of the following values differ depending on whether the MHEG-5 engine has access to an underlying layer to support trick modes.���

�NOTE – Trick modes might be provided by the ISO/IEC 13818-6 DSM-CC protocol.

����No trick mode�Trick mode���-1/1�Treated as 0�Reverse

Play backwards at normal speed���0/1�Stop

Freeze at current position�Stop

Freeze at current position���1/1�Normal play

Play from a point that is not under the control of the MHEG-5 engine�Normal play

Play from the point where the stream was when it left its previous mode���Other values of Speed are allowed (e.g. 1/2 or 2/1) in trick mode. In the case of no trick mode, such other value of Speed shall be treated as normal play (1/1) when they are positive and as stop (0/1) when they are negative or null.

•	Pair of Integers: A Numerator and an optional Denominator that defaults to 1.

•	Default value: 1/1.

��CounterPosition�Current temporal position of the Stream within the duration of a stream at normal speed.

This attribute is expressed in StreamCounterUnits.

The actual definition of the StreamCounterUnit is out of the scope of this Recommendation.

•	Integer.

•	Default value: 0.

��CounterEndPosition�Position of the last frame of a stream played at normal speed. The stream will stop automatically when it hits this position. The StreamStopped event is generated.

This attribute is expressed in StreamCounterUnits. ���The actual definition of the StreamCounterUnit is out of the scope of this Recommendation.

•	Integer.

•	Default value: -1, meaning EndOfStream.���

CounterTriggers�List of values representing the counter positions of the Stream where the stream player shall generate CounterTrigger events for this Stream.

Each trigger has a unique identifier within the CounterTriggers list and a counter position expressed in StreamCounterUnits.

•	Sequence of the following data structures:

–	trigger identifier: Integer;

–	counter position: Integer.

•	Initial value: Empty sequence.��37.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following events are defined:

StreamEvent�This event is automatically generated by the Stream player when the Stream multiplex crosses a specific marker. The marker is recognised on the basis of a tag that may be encoded within the Stream content data structure. There might be several markers with the same identity along a Stream multiplex.

•	Associated data: StreamEventTag – OctetString.���NOTE 1 – According to the semantics of the Link class, a Link set to trigger on StreamEvents from a specific stream object that does not have its EventData set will trigger on all StreamEvents from that object.

NOTE 2 – The encoding of StreamEvents may be done using the ISO/IEC 13818-6 DSM-CC protocol.

��StreamPlaying�This event is generated when a Stream multiplex has started playing. More specifically, it is generated simultaneously with the first piece of content data (video frame, audio sample) being presented to the user.

•	No associated data.

��StreamStopped�This event is generated when a Stream multiplex has stopped playing. More specifically, it is generated as soon as the last piece of content data (video frame, audio sample) has been presented to the user. Note that the RunningStatus of the Stream object is not affected by the occurrence of a StreamStopped event.

•	No associated data.

��CounterTrigger�This event is automatically generated by the Stream player when the CounterPosition of the Stream object crosses a value set with the SetCounterTrigger action. There might be several CounterTriggers triggered at the same counter position of a Stream.

•	Associated data: TriggerIdentifier – Integer.

NOTE – The encoding of counter position within the stream may be done using the ISO/IEC 13818-6 DSM-CC protocol.���37.3	Internal behaviours

The following internal behaviours semantics have changed from this object’s base class:

Preparation�Execute the following sequence of actions:

1)	Apply the first three steps of the Preparation behaviour as defined in the Root class.

2)	Apply the Activation behaviour to all StreamComponents of the Stream that have the InitiallyActive attribute set to True, in the order they appear in the Stream Multiplex.���3)	Apply steps four to six of the Preparation behaviour as defined in the Root class.

��Destruction�Execute the following sequence of actions:

1)	Apply the Destruction behaviour to all StreamComponents of the Stream, in the reverse order they appear in the Stream Multiplex.

2)	Apply the Destruction behaviour as defined in the base class.

��Activation�Execute the following sequence of actions:

1)	Apply the Activation behaviour as defined in the base class.

2)	Start playing all active StreamComponents.

3)	Set the RunningStatus attribute to True and generate an IsRunning event.

The Activation and Deactivation of StreamComponents like Audio, Video or RTGraphics corresponds to enabling or disabling them in a stream. For instance when a Stream plays, activating an Audio shall make that component audible (in addition to the others).

��Deactivation�Execute the following sequence of actions:

1)	If the RunningStatus attribute of the object is False, ignore the behaviour; otherwise:

2)	Stop playing all active StreamComponents.

3)	Execute Deactivation behaviour as defined in the base class.��37.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetData�The SetData action as defined in the Ingredient Class shall only be executed when the stream is inactive.

��Clone�Clone shall not be targeted to Stream.

���

SetCounterTrigger�(TriggerIdentifier, NewCounterValue)�Update the list of CounterTriggers of a Stream object.

Execute the following sequence of actions:

1)	Update the set of triggers of the CounterTriggers list of the target Stream, according to the following rules:���a)	If TriggerIdentifier is the identifier of an existing trigger in CounterTriggers, the new trigger replaces the previous one.

b)	If there is no trigger with identifier TriggerIdentifier in CounterTriggers, insert a new trigger with identifier TriggerIdentifier and value NewCounterValue in CounterTriggers.���c)	If NewCounterValue is not encoded and there is a trigger with identifier TriggerIdentifier in CounterTriggers, remove this trigger from the CounterTriggers list.

d)	If NewCounterValue is not encoded and there is no trigger with identifier TriggerIdentifier in CounterTriggers, discard this action.���2)	If the target Stream object is active, the MHEG-5 engine shall generate CounterTrigger events according to the new value of the CounterTriggers list.

Provision of use:

•	The Target object shall be an available Stream object.���Syntax description:�����SetCounterTrigger�-->�Target,�����TriggerIdentifier,�����NewCounterValue?���Target�-->�GenericObjectReference���TriggerIdentifier�-->�GenericInteger���NewCounterValue�-->�GenericInteger��SetSpeed�(NewSpeed)�Change the presentation speed of a stream.

Execute the following sequence of actions:

1)	Set the value of the Speed attribute of the target Stream object to NewSpeed. ���2)	If the target Stream is active, update immediately the rendering of the stream by taking into account the new value of the Speed attribute.

The NewSpeed attribute is defined as a ratio Numerator/Denominator.���

�NOTE 1 – As mentioned earlier, in a broadcast environment, play and stop shall start when possible in the broadcasted stream. In other cases, setting new speed (including normal play and stop) shall take place at the current counter position, or as close to it as possible (e.g. next I-frame). Counter position can be set by the appropriate action.

NOTE 2 – If Trick Modes are not supported by the engine, the value of Speed can still be set to any value, the engine will interpret them as explained in the Speed internal attribute.

Provision of use:

•	The Target object shall be an available Stream object.���Syntax description:���SetSpeed�-->�Target,�����NewSpeed���Target�-->�GenericObjectReference���NewSpeed�-->�Rational���Rational�-->�Numerator,�����Denominator?���Numerator�-->�GenericInteger�� �Denominator�-->�GenericInteger��SetCounterPosition�(NewCounterPosition)�Change the current position within a stream.

Execute the following sequence of actions:

1)	If the MHEG-5 engine is not provided with an underlying presentation layer that supports trick modes, discard this action.

2)	Set the value of the CounterPosition attribute of the target Stream to NewCounterPosition.

3)	If the target Stream is active, skip immediately to the new position without changing the RunningStatus of the target Stream.���NOTE – Stream events are not generated because of a SetCounterPosition action.

Provisions of use:

•	The Target object shall be an available Stream object.

•	NewCounterPosition shall indicate a valid position within the target Stream.

Syntax description:���SetCounterPosition�-->�Target,�����NewCounterPosition���Target�-->�GenericObjectReference���NewCounterPosition�-->�GenericInteger���

SetCounterEndPosition�(NewCounterEndPosition)�Change the end position of a stream.

Execute the following sequence of actions:

1)	If the MHEG-5 engine is not provided with an underlying presentation layer that supports trick modes, discard this action.

2)	Set the value of the CounterEndPosition attribute of the target Stream to NewCounterEndPosition. �����3)	If the target Stream is active and NewCounterEndPosition is already passed, stop the target Stream.

Provisions of use:

•	The Target object shall be an available Stream object.

•	NewCounterPosition shall indicate a valid position within the target Stream.

Syntax description:���SetCounterPosition�-->�Target,�����NewCounterPosition���Target�-->�GenericObjectReference���NewCounterPosition�-->�GenericInteger��37.5	Formal description

Stream Class�-->�Presentable Class,����Multiplex,����Storage?,����Looping?��Multiplex�-->�StreamComponent+��StreamComponent�-->�Audio class | Video class | RTGraphics class��Storage�-->�memory | stream��Looping�-->�INTEGER��38	Audio Class

Description:�Defines the attributes and behaviour of an elementary audio stream of a Stream multiplex. The Audio object shall be a StreamComponent of a Stream object. ��Base class:�Presentable��Subclasses:�None��Status:�Concrete class���38.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

38.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��RunningStatus�Root�This attribute expresses that this object is enabled or disabled to play when the Stream object containing it is active. The object is only played when this attribute is True and the RunningStatus of the Stream is True.��ContentHook, OriginalContent, Shared�Ingredient�These attributes shall not be encoded for this class. ��38.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

OriginalVolume�Volume of the Audio object when it is first available.

The OriginalVolume attribute is expressed in dB, where 0 dB is defined to be the standard volume for playing back audio. The precise accuracy of the volume rendering is outside the scope of this Recommendation.���•	Optional Integer.

•	Default value: 0.

��ComponentTag�A unique identifier for the elementary audio stream within a stream of multiplexed media.

•	Integer.��38.1.3	Own internal attributes

This class defines the following additional internal attribute:

Volume�Current volume of the Audio object, defined in the same way as OriginalVolume.

•	Integer.

•	Initial value: OriginalVolume.��38.2	Events

This class has the same events as its base class, with identical semantics.

38.3	Internal behaviours

This class defines no additional internal behaviours.

�38.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetDataClone�The SetData action as defined in the Ingredient Class shall only be executed when the Audio is inactive.

��Clone�Clone shall not be targeted to Audio.

��SetVolume�(NewVolume)�Change the volume of an audio.

Execute the following sequence of actions:

1)	Set the Volume attribute of the target Audio object to NewVolume.

2)	If the elementary audio stream identified by the ComponentTag attribute is being played, update the rendering of the Audio by taking into account the new Volume.

Provision of use:

•	The Target object shall be an available Audio object.

Syntax description:���SetVolume�-->�Target,�����NewVolume���Target�-->�GenericObjectReference���NewVolume�-->�GenericInteger�����GetVolume�(VolumeVar)�Return the volume of an Audio.

Provisions of use:

•	The Target object shall be an available Audio object.

•	VolumeVar shall be an active IntegerVariable object.

Syntax description:���GetVolume�-->�Target,�����VolumeVar���Target�-->�GenericObjectReference���VolumeVar�-->�ObjectReference��38.5	Formal description

Audio Class�-->�Presentable Class,����ComponentTag����OriginalVolume?��ComponentTag�-->�INTEGER��OriginalVolume�-->�INTEGER���39	Video Class

Description:�Defines the attributes and behaviour of an elementary video stream of a Stream multiplex. The Video object shall be a StreamComponent of a Stream object.��Base class:�Visible��Subclasses:�None��Status:�Concrete class��39.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

39.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��RunningStatus�Root�This attribute expresses that this object is enabled or disabled to play when the Stream object containing it is active. The object is only played when this attribute is True and the RunningStatus of the Stream is True.��ContentHook, OriginalContent, Shared�Ingredient�These attributes shall not be encoded for this class.��OriginalPaletteRef�Visible�This attribute shall not be encoded for this class.��

39.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Termination�This attribute indicates whether the last frame of the video shall disappear when the presentation of the video finishes, or whether it shall freeze.

•	Optional attribute – One of freeze | disappear.

•	Default value: disappear.

��ComponentTag�A unique identifier for the elementary video stream within a stream of multiplexed media.

•	Integer.��39.1.3	Own internal attributes

This class defines no additional internal attribute.

39.2	Events

This class has the same events as its base class, with identical semantics.

�39.3	Internal behaviours

This class defines no additional internal behaviours.

39.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetData�The SetData action as defined in the Ingredient Class shall only be executed when the Video is inactive.

��Clone�Clone shall not be targeted to Video.

��ScaleVideo�(XScale, YScale)�If the MHEG-5 engine implements the Scaling option, the effect of this action is to adapt the rendering of the Video so that it fits to the XScale and YScale dimensions.

XScale and YScale parameters represent the final dimensions of the Video in pixel numbers. Thus, the graphical representation of the Video may not keep its original aspect ratio.

Note that this action does not affect the BoxSize internal attribute of the Video object.

Provisions of use:

•	The Target object shall be an available Video object.

•	XScale and YScale shall be positive Integers.���Syntax description:�����ScaleVideo�-->�Target,�����XScale, YScale���Target�-->�GenericObjectReference���XScale, YScale�-->�GenericInteger��39.5	Formal description

Video Class�-->�Visible Class,����ComponentTag����Termination?��Termination�-->�freeze | disappear��ComponentTag�-->�INTEGER���40	RTGraphics Class

Description:�Defines the attributes and behaviour of non-persistent graphics objects, defined as of an elementary stream of a Stream multiplex. The RTGraphics object shall be a StreamComponent of a Stream object.��Base class:�Visible��Subclasses:�None��Status:�Concrete class��40.1	Attributes

This subclause defines the inherited, exchanged and internal attributes for this class.

40.1.1	Inherited attributes

This class has all the attributes of its base class, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��RunningStatus�Root�This attribute expresses that this object is enabled or disabled to play when the Stream object containing it is active. The object is only played when this attribute is True and the RunningStatus of the Stream is True.��ContentHook, OriginalContent, Shared�Ingredient�These attributes shall not be encoded for this class.��40.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

ComponentTag�A unique identifier for the elementary RTGraphics stream within a stream of multiplexed media.

•	Integer.

��Termination�This attribute indicates whether the last image of the graphics shall disappear when the presentation finishes, or whether it shall freeze.

•	Optional attribute – One of freeze | disappear.

•	Default value: disappear.��40.1.3	Own internal attributes

This class defines no additional internal attribute.

40.2	Events

This class has the same events as its base class, with identical semantics.

40.3	Internal behaviours

This class defines no additional internal behaviours.

�40.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetData�The SetData action as defined in the Ingredient Class shall only be executed when the RTGraphics is inactive.

��Clone�Clone shall not be targeted to RTGraphics.��40.5	Formal description

RTGraphics Class�-->�Visible Class,����ComponentTag����Termination?��ComponentTag�-->�INTEGER��Termination�-->�freeze | disappear��41	Interactible Class

Description:�Defines functionality associated with an interaction behaviour of Visibles��Base class:�None (mix-in class)��Subclasses:�Slider, HyperText, EntryField, Button��Status:�Abstract class��41.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

41.1.1	Inherited attributes

This class has no inherited attributes.

41.1.2	Own exchanged attributes

This class defines the following exchanged attributes:

EngineResp�Determines where the responsibility lies for generating visual feedback to the user as the result of changes to the internal attribute HighlightStatus.

If EngineResp is set to True, the MHEG-5 engine shall generate visual feedback to the user when there is a state change in the internal attribute HighlightStatus. When EngineResp is set to False, the engine shall generate no such visual feedback.

The exact nature of the visual feedback is outside the scope of this Recommendation.

•	Optional Boolean.

•	Default value: True.

���

HighlightRef-Colour�Reference colour for visual feedback generated when the HighlightStatus attribute is True. The actual colour used for rendering the highlight is outside the scope of this Recommendation; however, it is recommended that an MHEG-5 engine attempts to render the highlight using HighlightRefColour.

If the OriginalPaletteRef attribute is encoded, the HighlightRefColour attribute shall be a zero-based index of a colour in the colour look-up table defined by that Palette. Otherwise, it shall be an OctetString encoding an actual colour.���•	Optional Integer or OctetString.

•	Default value: Value encoded by Application.��41.1.3	Own internal attributes

This class defines the following internal attributes:

HighlightStatus�This attribute is associated with a certain type of visual feedback to the user.

When both HighlightStatus and EngineResp are True, the MHEG-5 engine shall generate a visual feedback to the user, for instance in the form of a line drawn around the Interactible object. In all other cases, no such feedback shall be generated. For the generation of this visual feedback, the HighlightRefColour may be used.

NOTE 1 – Although this visual feedback itself does not change the behaviour of the object, this attribute may be used to signal to the user that the Interactible is ready to be interacted with, for instance in an implementation of jumping-highlight navigation.���NOTE 2 – The only way to change the HighlightStatus attribute is through the SetHighlightStatus action.

•	Boolean value.

•	Initial value: False.

��InteractionStatus�This attribute describes whether or not the Interactible is currently being interacted with.

If InteractionStatus is False, the Interactible is not currently being interacted with by the user. Handling of user input events takes place normally. See clause 53.

If InteractionStatus is True, the Interactible is currently being interacted with by the user. As a consequence, no events of the type UserInput will be generated by the active Scene object. These events shall be handled directly by the Interactible.

At any time, at most one Interactible shall have its InteractionStatus set to True.

NOTE 1 – The only way to change the InteractionStatus internal attribute is by using the SetInteractionStatus action.���

�NOTE 2 – Although Links that trigger on UserInput events cannot fire when the InteractionStatus internal attribute is True, other Links may still fire. This makes it possible, for instance, to implement time-outs for the interaction process.

•	Boolean value.

•	Initial value: False.��41.2	Events

This class defines the following events:

Interaction-Completed�This event is generated as a result of a change in an Interactible. The event is generated only once per interaction, i.e. it is generated only when the InteractionStatus internal attribute returns to False after an interaction.

•	No associated data.

��HighlightOn�This event is generated when the HighlightStatus attribute of the Interactible changes from False to True.

•	No associated data.

��HighlightOff�This event is generated when the HighlightStatus attribute of the Interactible changes from True to False.

•	No associated data.

��CursorEnter�This event is generated automatically by the MHEG-5 engine if, and only if:

1)	the engine implements the Free Moving Cursor option;

2)	the moving cursor has entered the area defined by the Interactible;

3)	the Interactible is active.

NOTE – See 53.6 for more details on the generation of CursorLeave and CursorEnter events.

��CursorLeave�This event is generated automatically by the MHEG-5 engine if, and only if:

1)	the engine implements the Free Moving Cursor option;

2)	the moving cursor has left the area defined by the Interactible;

3)	the Interactible is active.

NOTE – See 53.6 on main mechanisms for more details on the generation of CursorLeave and CursorEnter events.���41.3	Internal behaviours

This class defines the following internal behaviour:

Interaction�Execute the following steps synchronously:

1)	Set the InteractionStatus internal attribute to True.

2)	Generate visual feedback to the user that signals the fact that the Interactible may now be interacted with.

NOTE – Most of the Interactible subclasses expand on this behaviour.��41.4	Effect of MHEG-5 actions

This class defines the following applicable MHEG-5 actions:

SetInteraction-Status (NewInteraction-Status)�This action is used to influence the InteractionStatus internal attribute.

Execute the following sequence of actions:

1)	If NewInteractionStatus is set to True:

a)	If the target Interactible or any other Interactible in the current Scene has its InteractionStatus attribute set to True, discard the action. Otherwise:

b)	Apply the Interaction behaviour of the target Interactible.���2)	If NewInteractionStatus is set to False:

a)	If the target Interactible has its InteractionStatus set to False, discard the action. Otherwise:���b)	Immediately interrupt the Interaction behaviour that is taking place for the target Interactible. The state of the target Interactible after the Interaction behaviour is interrupted shall reflect any interaction which has taken place up to the point where the interaction was interrupted.

c)	Generate the InteractionCompleted event.

Provision of use:

•	The Target object shall be an active Interactible object.

Syntax description:���SetInteractionStatus�-->�Target,�����NewInteractionStatus���Target�-->�GenericObjectReference���NewInteractionStatus�-->�GenericBoolean�� ���GetInteraction-Status�(InteractionStatus-Var)�Set the Variable referenced by InteractionStatusVar to the value of the InteractionStatus attribute.

Provisions of use:

•	The Target object shall be available.

•	InteractionStatusVar shall refer to an active BooleanVariable object.���

�Syntax description:���GetInteractionStatus�-->�Target,�����InteractionStatusVar���Target�-->�GenericObjectReference���InteractionStatusVar�-->�ObjectReference�� ���SetHighlight-Status�(NewHighlight-Status)�Change the highlighted state of an Interactible.

Execute synchronously the following sequence of actions:

1)	If the current HighlightStatus is equal to NewHighlightStatus, discard the action. Otherwise:

2)	Set the HighlightStatus attribute of the target Interactible to NewHighlightStatus.

3)	If the target Interactible is active, if EngineResp is set to True and if HighlightStatus is set to True, redraw the target Interactible to present the visual feedback associated to the highlighted state.

4)	If the target Interactible is active, if EngineResp is set to True and if HighlightStatus is set to False, redraw the target Interactible to remove the visual feedback associated to the highlighted state.���Provision of use:

•	The Target object shall be an available Interactible object.

Syntax description:���SetHighlightStatus�-->�Target,�����NewHighlightStatus���Target�-->�GenericObjectReference���NewHighlightStatus�-->�GenericBoolean�����GetHighlight-Status�(HighlightStatus-Var)�Set the Variable referenced by HighlightStatusVar to the value of the HighlightStatus attribute.

Provisions of use:

•	The Target object shall be available.

•	HighlightStatusVar shall refer to an active BooleanVariable object.

Syntax description:�����GetHighlightStatus�-->�Target,�����HighlightStatusVar���Target�-->�GenericObjectReference���HighlightStatusVar�-->�ObjectReference���41.5	Formal description

Interactible Class�-->�EngineResp?,����HighlightRefColour?,��EngineResp�-->�BOOLEAN��HighlightRefColour�-->�Colour��42	Slider Class

Description:�Defines an interaction widget used to set a position within a linear range��Base classes:�Visible, Interactible��Subclasses:�None��Status:�Concrete class��42.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

42.1.1	Inherited attributes

This class has all the attributes of its base classes, with the following constraints:

Attribute Name�Defined in�Constraints and equirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��BoxSize, Position�Visible�In addition to defining the bounding box of the Slider, these attributes also define the actual size of the Slider. This size shall be such that the Slider completely fills its bounding box.��42.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

Orientation�Orientation of the main axis of the Slider.

The orientation specifies the direction in which the Slider moves from the minimum towards the maximum value.

Although the exact rendering of the Slider object is not specified in detail by this Recommendation, it shall be rendered such that its orientation conforms to this attribute.

•	Possible values: left | right | up | down

��InitialValue�The initial value of the Slider, i.e. the value it has when it is first activated after it has been prepared.

The value shall be an Integer and it shall be consistent with MinValue, MaxValue, and StepSize in the manner described below.

•	Optional Integer.

•	Default value: MinValue.���

MinValue�Lowest value that the SliderValue attribute may be set to.

The value shall be consistent with InitialValue, MaxValue, and StepSize in the manner described below.���•	Optional Integer.

•	Default value: 1.

��MaxValue�Greatest value that the SliderValue attribute may be set to.

The value shall be consistent with InitialValue, MinValue, and StepSize in the manner described below.

•	Integer value.

•	Default value: None.

��InitialPortion�Represents a portion of the range [MinValue, MaxValue]. This value shall be smaller than or equal to the number (MaxValue (MinValue).

This value shall be encoded if and only if the value of the SliderStyle attribute is proportional, in which case the following double inequality is always True:

MinValue (InitialValue (MaxValue – InitialPortion

•	Optional Integer.

•	Default value: None.

��StepSize�The smallest value by which the value of the SliderValue internal attribute may be increased or decreased.

The value shall be a positive Integer, and it shall be consistent with InitialValue, MinValue, and MaxValue in the following manner:

All values that the slider may take are expressed as:

	vi = MinValue + i (StepSize,

where i ({0 .. (MaxValue – MinValue)/StepSize}.

The attributes InitialValue, MinValue, MaxValue and StepSize shall conform to the following criteria:

	InitialValue = MinValue + M (StepSize, for�some M ({0 .. (MaxValue – MinValue)/StepSize}.

	MinValue < MaxValue

	N (StepSize = (MaxValue – MinValue), where N is some positive Integer.���•	Optional Integer.

•	Default value: 1.

���

SliderStyle�This attribute may take the value normal, thermometer, and proportional. The SliderStyle attribute influences the rendering of the Slider in the following way:

•	If the SliderStyle is set to normal, the Slider is rendered as a «marker», which is positioned on a «main axis» at the position corresponding to the SliderValue attribute.���•	If the SliderStyle is set to thermometer, the Slider is rendered as a «main axis», which is filled from its beginning to the position corresponding to the SliderValue attribute.

•	If the SliderStyle is set to proportional, the Slider is rendered as a «main axis», which is filled from the position corresponding to the SliderValue attribute to the position corresponding to the sum of the SliderValue and the Portion internal attributes.

This Recommendation does not specify exactly what this rendering should look like. The following picture is provided by way of example only:��� EMBED Word.Picture.6 ���

Figure 13/T.172 – Examples of Sliders in different SliderStyles

SliderColour�•	Optional attribute.

•	Possible values: normal | thermometer | proportional.

•	Default value: normal – Specify a colour that may be used by the engine to render the Slider object.

The SliderColour value is expressed either as an absolute colour value or as a zero-based index in a colour look-up table. In the latter case, the Slider object must have the PaletteRef attribute encoded, which is then used to translate the index to an actual colour value.

Exactly how this colour is used to render the Slider is not specified by this Recommendation. It is provided as a hint to the MHEG-5 engine on the colour scheme to use when rendering the Slider.

The actual colour resolution in the rendering process is outside the scope of this Recommendation.

•	Optional attribute.

•	Default value: Value encoded by Application.���42.1.3	Own internal attributes

This class defines the following additional internal attributes:

SliderValue�The current value of the slider.

��Portion�The current value of the attribute that governs the rendering of the Slider when the SliderStyle is proportional.

If the SliderStyle is set to proportional, the Slider is rendered as a «main axis» which is filled from the position corresponding to the SliderValue attribute to the position corresponding to the sum of the SliderValue and the Portion internal attributes.��42.2	Events

This class has the same events as its base class, with identical semantics.

42.3	Internal behaviour

The following internal behaviour's semantics have changed from this object's base class:

Interaction�Execute the following sequence of actions:

1)	Apply the Interaction behaviour as defined in the Interactible class.

2)	Allow the user to interact with the Slider object by moving the marker along the main axis. Exactly how this user interaction takes place is not specified by this Recommendation. However, the smallest marker displacement shall be proportional to the value of the StepSize attribute.

3)	When the marker has stopped at a new position:

a)	set the SliderValue attribute to a value that corresponds to the new marker position;

b)	set the InteractionStatus attribute to False; and

c)	generate an InteractionCompleted event.��42.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base classes, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

Step�(NbOfSteps)�Set a new value to a slider relatively to its current value.

Execute the following sequence of actions:

1)	If NbOfSteps is positive, increase the value of SliderValue by NbOfSteps (StepSize.

2)	If NbOfSteps is negative, decrease the value of SliderValue by NbOfSteps (StepSize.���

�3)	If the target Slider is active, redraw the Slider using the new value of SliderValue and according to its position in the DisplayStack of the active Application object.

4)	Generate an InteractionCompleted event.

Provisions of use:

•	The Target object shall be an available Slider object.

•	NbOfSteps shall be set so that:

MinValue ((NbOfSteps (StepSize) + SliderValue

and:

(NbOfSteps (StepSize) + SliderValue + Portion (MaxValue

	The value of Portion in the expressions above shall be taken to be 0 if the SliderStyle is not proportional.���Syntax description:���Step�-->�Target,�����NbOfSteps���Target�-->�GenericObjectReference���NbOfSteps�-->�GenericInteger�����SetSliderValue�(NewSliderValue)�Set an absolute value to a slider.

Execute the following sequence of actions:

1)	Set the SliderValue attribute of the target Slider to NewSliderValue.

2)	If the target Slider is active, redraw the Slider taking into account the new value of SliderValue and according to its position in the DisplayStack of the active Application object.

3)	Generate an InteractionCompleted event.

Provisions of use:

•	The Target object shall be an available Slider object.

NewSliderValue shall be within the range [MinValue, MaxValue�Portion].

The value of Portion in the expression above shall be taken to be 0 if the SliderStyle is not proportional.

•	(NewSliderValue – MinValue) MOD StepSize shall be equal to 0.

Syntax description:���SetSliderValue�-->�Target,�����NewSliderValue���Target�-->�GenericObjectReference���NewSliderValue�-->�GenericInteger������

GetSliderValue�(SliderValueVar)�Set the Variable referenced by SliderValueVar to the value of the SliderValue attribute.

Provisions of use:

•	The Target object shall be an available Slider object.

•	SliderValueVar shall refer to an active IntegerVariable object.

Syntax description:���GetSliderValue�-->�Target,�����SliderValueVar���Target�-->�GenericObjectReference���SliderValueVar�-->�ObjectReference�����SetPortion�(NewPortion)�Set the size of the portion represented by a slider of style proportional.

Execute the following sequence of actions:

1)	Set the Portion attribute of the target Slider to NewPortion.

2)	If the target Slider is active, redraw the Slider according to the new value of Portion and according to its position in the DisplayStack of the active Application object.

3)	Generate an InteractionCompleted event.

Provisions of use:

•	The Target object shall be an available Slider object of style proportional.

•	NewPortion shall be smaller than or equal to (MaxValue – SliderValue)

Syntax description:���SetPortion�-->�Target,�����NewPortion���Target�-->�GenericObjectReference���NewPortion�-->�GenericInteger�����GetPortion�(PortionVar)�Set the Variable referenced by PortionVar to the value of the Portion attribute.

Provisions of use:

•	The Target object shall be an available Slider object of style proportional.

•	PortionVar shall refer to an active IntegerVariable object.���

��Syntax description:���GetPortion�-->�Target,�����PortionVar���Target�-->�GenericObjectReference���PortionVar�-->�ObjectReference��42.5	Formal description

Slider Class�-->�Visible Class,����Interactible Class,����Orientation,����Max Value,����Min Value?,����InitialValue?,����InitialPortion?,����StepSize?,����SliderStyle?,����SliderColour?��Orientation�-->�left | right | up | down��InitialValue�-->�INTEGER��InitialPortion�-->�INTEGER��Min Value�-->�INTEGER��Max Value�-->�INTEGER��StepSize�-->�INTEGER��SliderStyle�-->�normal | thermometer | proportional��SliderColour�-->�Colour��43	EntryField Class

Description:�Defines an interaction widget used by the final user to edit and/or modify a text��Base classes:�Text, Interactible��Subclasses:�None��Status:�Concrete class��43.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

43.1.1	Inherited attributes

This class has all the attributes of its base class, with the same semantics.

�43.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

InputType�Type of allowed characters.

If this attribute is set to alpha, only characters that are not digits (i.e. 0123456789) shall be accepted as entries. If this attribute is set to numeric, only characters that are digits shall be accepted as being entries. If this attribute is set to any, all characters shall be accepted. If this attribute is set to listed, only such characters shall be accepted that are provided in the CharList attribute of the EntryField. This provides a possibility to customize the input filter.���NOTE – The value any also allows for entry of symbols (e.g. &*$#@!).

•	Possible values: alpha | numeric | any | listed.

•	Default value: any.

��CharList�Characters that might be entered in this EntryField.

This attribute shall always be encoded when InputType is set to listed. Otherwise, it shall not be encoded.

•	Optional OctetString.

•	Default value: None.

��ObscuredInput�Indicate how to echo back input characters. This may be used for password input.

If this attribute is set to True, the entered characters shall be echoed back to the screen in an unreadable form. Otherwise, the entered characters shall be echoed back to the screen in a readable form.

•	Optional Boolean value.

•	Default value: False.

��MaxLength�Provide the maximum number of expected input characters. When this maximum number of characters is reached in the EntryField, an EntryFieldFull event is generated.

If MaxLength is set to 0, the number of expected characters is undefined. In this case, the MHEG-5 engine shall provide the user with some means of terminating the interaction.

•	Optional Integer.

•	Default value: 0.���43.1.3	Own internal attributes

This class defines the following additional internal attributes:

EntryPoint�Define (as a zero-based index) where the next character to be entered in the EntryField shall be placed.

–	If this attribute is equal to 0, the next character shall be placed before the first character of the EntryField.

–	If this attribute is equal to or greater than the length of the text currently in the EntryField, the next character shall be attached to the end of the EntryField.

–	For all other values n of this attribute, the next character shall be inserted after the nth character of the EntryField.���•	Integer value.

•	Initial value: 0.

��OverwriteMode�Determine whether new input characters overwrite characters in the existing text or are inserted between them.

If this attribute is True, each character entered in the EntryField replaces (overwrites) the character that was previously located at the EntryPoint; all other characters are untouched.

If this attribute is False, the entry is inserted just before the character located at the EntryPoint.

If the EntryPoint is set to a value equal to or greater than the length of the text of the EntryField, the characters that are entered are attached to the end of the EntryField regardless of the value of this attribute.

•	Boolean.

•	Default value: False.��43.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following events are defined:

Interaction-Completed�This event is generated as a result of the ending the modification process of an EntryField.

��EntryFieldFull�This event is generated when an EntryField capacity is reached. This event shall only be generated when MaxLength attribute is encoded, in which case it is generated when the number of characters in the EntryField reaches MaxLength.

The event is asynchronous.

A SetData action shall not generate EntryFieldFull events.

•	No associated data.���43.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Interaction�Execute the following sequence of actions:

1)	Apply the Interaction behaviour as defined in the Interactible class.

2)	Allow the user to modify the TextData attribute of the EntryField object by entering characters.

3)	After each character is entered, update the TextData attribute accordingly (taking into account the value of the EntryPoint and Overwrite attributes), update the EntryPoint attribute.���4)	When the entry is complete (because the user terminates the entry or because the application terminates it using the SetInteractionStatus action):

a)	set the InteractionStatus attribute to False;

b)	generate an InteractionCompleted event.��43.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetOverwrite-Mode�(NewOverwrite-Mode)�Change an entry field to toggle to and from overwriting mode.

Execute the following sequence of actions:

1)	If current OverwriteMode is equal to NewOverwriteMode, discard the action. Otherwise:

2)	Set OverwriteMode of the target EntryField to NewOverwriteMode.

3)	If the target EntryField is active, update the visible representation of the EntryField according to the new value of OverwriteMode.

Provision of use:

•	The Target object shall be an available EntryField object.

Syntax description:���SetOverwriteMode�-->�Target,�����NewOverwriteMode���Target�-->�GenericObjectReference���NewOverwriteMode�-->�GenericBoolean�����GetOverwrite-Mode�(OverwriteMode-Var)�Set the Variable referenced by OverwriteModeVar to the value of the OverwriteMode attribute.

Provisions of use:

•	The Target object shall be an available EntryField object.

•	OverwriteModeVar shall refer to an active BooleanVariable object.���

�Syntax description:���GetOverwriteMode�-->�Target,�����OverwriteModeVar���Target�-->�GenericObjectReference���OverwriteModeVar�-->�ObjectReference�����SetEntryPoint�(NewEntryPoint)�Change the position of the entry point of an entry field.

Execute the following sequence of actions:

1)	Set EntryPoint of the target EntryField to NewEntryPoint.

2)	If the target EntryField is active, update the visible representation of the EntryField according to the new value of EntryPoint.

Provisions of use:

•	The Target object shall be an available EntryField.

•	NewEntryPoint shall be greater than or equal to 0.���Syntax description:���SetEntryPoint�-->�Target,�����NewEntryPoint���Target�-->�GenericObjectReference���NewEntryPoint�-->�GenericInteger�����GetEntryPoint�(EntryPointVar)�Set the Variable referenced by EntryPointVar to the value of the EntryPoint attribute.

Provisions of use:

•	The Target object shall be an available EntryField object.

•	EntryPointVar shall refer to an active IntegerVariable object.

Syntax description:���GetEntryPoint�-->�Target,�����EntryPointVar���Target�-->�GenericObjectReference���EntryPointVar�-->�ObjectReference���43.5	Formal description

EntryField Class�-->�Text Class,����Interactible Class,����InputType?,����CharList?,����ObscuredInput?,����MaxLength?��InputType�-->�alpha | numeric | any | listed��CharList�-->�OctetString��ObscuredInput�-->�BOOLEAN��MaxLength�-->�INTEGER��44	HyperText Class

Description:�The HyperText class is a subclass of the Text class, with the special property of allowing for portions of the text to be associated with a piece of information. These portions of text are called anchors in the rest of this clause.��Base classes:�Text, Interactible��Subclasses:�None��Status:�Concrete class��44.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

44.1.1	Inherited attributes

This class has all the attributes of its base class, with the same semantics.

44.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

44.1.3	Own internal attributes

This class defines the following additional internal attribute:

LastAnchorFired�Tag of the last anchor fired.

•	OctetString.

•	Initial value: Empty string.��44.2	Events

This class has the same events as its base class, with identical semantics. In addition, the following event is defined:

AnchorFired�Signal that the user has selected one of the anchors in the HyperText object.

•	Associated data: The tag of the anchor that fired – OctetString.���44.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Interaction�Execute the following sequence of actions:

1)	Apply the Interaction behaviour as inherited from the Interactible class.���2)	Allow the user to move the focus through the set of anchors in the HyperText object and to select the focused anchor. Each time an anchor is selected, an AnchorFired event is generated.

3)	When the interaction is complete (either because the user terminates the interaction or because the application terminates it using the SetInteractionStatus action):

a)	set the InteractionStatus attribute to False;

b)	generate an InteractionCompleted event.��44.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions is defined:

GetLastAnchor-Fired�(LastAnchor-FiredVar)�Set the Variable referenced by LastAnchorFiredVar to the value of the LastAnchorFired attribute.

Provisions of use:

•	The Target object shall be an available Hypertext object.

•	LastAnchorFired shall refer to an active OctetStringVariable object.���Syntax description:���GetLastAnchorFired�-->�Target,�����LastAnchorFiredVar���Target�-->�GenericObjectReference���LastAnchorFiredVar�-->�ObjectReference��44.5	Formal description

HyperText Class�-->�Text Class,����Interactible Class��45	Button Class

Description:�Defines functionality associated with the rendering and interaction with one�state and two-state buttons��Base class:�Visible, Interactible��Subclasses:�Hotspot, PushButton��Status:�Abstract class���45.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

45.1.1	Inherited attributes

This class has all the attributes of its base classes, with the following constraints:

Attribute Name�Defined in�Constraints and requirements��ContentHook�Ingredient�This attribute shall not be encoded for this class.��OriginalContent�Ingredient�This attribute shall not be encoded for this class.��InteractionStatus�Interactible�This internal attribute is not defined for the Button class.��BoxSize, Position�Visible�In addition to defining the bounding box of the Button, these attributes also define the actual size of the Button. This size shall be such that the Button completely fills its bounding box.��45.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

ButtonColour�Specify a colour that may be used by the engine to render the Button object.

The ButtonColour attribute value is expressed either as an absolute colour value or as a zero-based index in a colour look-up table. In the latter case, the Button object must have the PaletteRef attribute encoded, which is then used to translate the index to an actual colour value.���Exactly how this colour is used to render the Button is not specified by this Recommendation. It is provided as a hint to the MHEG-5 engine on the colour scheme to use when rendering the Button.

The actual colour resolution in the rendering process is outside the scope of this Recommendation.

•	Optional attribute.

•	Default value: Value encoded by Application.��45.1.3	Own internal attributes

This class defines the following additional internal attribute:

SelectionStatus�Each button may store one bit of information. This attribute is True when the Button object is in the selected state. The selected state is entered as a result of invoking the Select action.

•	Boolean value.

•	Initial value: False��45.2	Events

IsSelected�This event is generated when the SelectionStatus of the Button changes from False to True.

•	No associated data.

���

IsDeselected�This event is generated when the SelectionStatus of the Button changes from True to False.

•	No associated data.��45.3	Internal behaviours

The following internal behaviour's semantics have changed from this object's base class:

Interaction�This behaviour is not defined for the Button class.

NOTE – As a result, the Button class shall not generate any InteractionCompleted event.

��Selection�Execute the following sequence of actions:

1)	Set the SelectionStatus to True.

2)	If the EngineResp attribute is True and the Button is active, redraw the Button object taking into account the new value of SelectionStatus and according to its position in the DisplayStack of the active Application object.

3)	Generate an IsSelected event.

��Deselection�Execute the following sequence of actions:

1)	Set the SelectionStatus to False.

2)	If the EngineResp attribute is True and the Button is active, redraw the Button object taking into account the new value of SelectionStatus and according to its position in the DisplayStack of the active Application object.

3)	Generate an IsDeselected event.��45.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

SetInteraction-Status�This action shall not be targeted to a Button object.

��GetInteraction-Status�This action shall not be targeted to a Button object.

��Select�Execute the following sequence of actions:

1)	If SelectionStatus is currently set to True, disregard this action.

2)	If SelectionStatus is currently set to False, apply the Selection behaviour of the target Button.

Provision of use:

•	The Target object shall be an available Button.���

�Syntax description:���Select�-->�Target���Target�-->�GenericObjectReference�����Deselect�Execute the following sequence of actions:

1)	If SelectionStatus is currently set to False, disregard this action.

2)	If SelectionStatus is currently set to True, apply the Deselection behaviour of the target Button.

Provision of use:

•	The Target object shall be an available Button.

Syntax description:���Deselect�-->�Target���Target�-->�GenericObjectReference��45.5	Formal description

Button Class�-->�Visible Class,����Interactible Class,����ButtonColour?��ButtonColour�-->�Colour��46	Hotspot Class

Description:�Defines invisible unlabelled rectangular areas on the screen that may interact with the user to produce IsSelected events��Base class:�Button��Subclasses:�None��Status:�Concrete class��46.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

46.1.1	Inherited attributes

This class has all the attributes of its base classes, with identical semantics, except for the following attribute:

SelectionStatus�Rendering of a Hotspot object shall depend on the SelectionStatus attribute. When the SelectionStatus attribute and the EngineResp are both True, the Hotspot shall be rendered in a way that signals to the user that selection has taken place. For this rendering process, the attribute ButtonColour may be used. In all other cases, the Hotspot shall have no visual rendering except such rendering as is prescribed by the HighlightStatus of its base class.���46.1.2	Own exchanged attributes

This class defines no additional exchanged attribute.

46.1.3	Own internal attributes

This class defines no additional internal attribute.

46.2	Events

This class has the same events as its base classes, with identical semantics.

46.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

46.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class. The following MHEG-5 action semantics have changed from this object’s base class:

Select�Execute the following sequence of actions:

1)	Apply the Selection behaviour as defined in the base class.

2)	Apply the Deselection behaviour as defined in the base class.

The provisions of use and syntax description of the action are unchanged.��46.5	Formal description

Hotspot Class�-->�Button Class��47	PushButton Class

Description:�Defines labelled, largely rectangular areas on the screen that may interact with the user to produce IsSelected events��Base class:�Button��Subclasses:�SwitchButton��Status:�Concrete class��47.1	Attributes

This subclause defines inherited, exchanged and internal attributes for this class.

47.1.1	Inherited attributes

This class has all the attributes of its base classes, with identical semantics, except for the following attribute:

SelectionStatus�Rendering of a PushButton object shall depend on the SelectionStatus attribute. When the SelectionStatus attribute and the EngineResp attribute are both True, the PushButton shall be rendered in a way that signals to the user that selection has taken place. This rendering shall depict a button that has ���

�been pressed. In all other cases, the Button shall be rendered in a way that signals to the user that selection has not taken place. This rendering shall depict a button that has not been pressed.��47.1.2	Own exchanged attributes

This class defines the following additional exchanged attributes:

OriginalLabel�One-line piece of text that represents the initial label of the PushButton.

•	Optional OctetString.

•	Default value: Empty string.

��CharacterSet�Identification of the character set, or set of character sets, that shall be used by default for rendering of the label. This Integer shall be encoded with a value representing the character set. The application domain shall define a range of CharacterSet and its semantics.���NOTE – The CharacterSet attribute provides the initial character set for a label. In addition, the text encoding format may contain escape sequences to switch between character sets.

•	Optional Integer.

•	Default value: The value of CharacterSet attribute from the Application object, if that attribute is specified.��47.1.3	Own internal attributes

This class defines the following additional internal attribute:

Label�Label of the PushButton.

•	Optional OctetString.

•	Initial value: Value of the OriginalLabel attribute.��47.2	Events

This class has the same events as its base class, with identical semantics.

47.3	Internal behaviours

This class has all the internal behaviours of its base class, with identical semantics.

47.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with the following changes and extensions:

Select�Execute the following sequence of actions:

1)	Apply the Selection behaviour as defined in the base class.

2)	Apply the Deselection behaviour as defined in the base class.

The provisions of use and syntax description of the action are unchanged.���

SetLabel�(NewLabel)�Change the label of a PushButton.

Execute the following sequence of actions:

1)	Set Label attribute of the target PushButton to NewLabel.

2)	If the target PushButton is active, redraw the PushButton taking into account the new value of Label and according to its position in the DisplayStack of the active Application object.

Provision of use:

•	The Target object shall be an available PushButton.

Syntax definition:���SetLabel�-->�Target,�����NewLabel���Target�-->�GenericObjectReference���NewLabel�-->�GenericOctetString�����GetLabel�(LabelVar)�Set the Variable referenced by LabelVar to the value of the Label attribute.

Provision of use:

•	LabelVar shall refer to an active OctetStringVariable object.���Syntax description:���GetLabel�-->�Target,�����LabelVar���Target�-->�GenericObjectReference���LabelVar�-->�ObjectReference��47.5	Formal description

PushButton Class�-->�Button Class,����OriginalLabel?,����CharacterSet?��OriginalLabel�-->�OctetString���48	SwitchButton Class

Description:�Defines a data structure to deal with labelled, largely rectangular areas on the screen that may interact with the user to produce IsSelected and IsDeselected events��Base class:�PushButton��Subclasses:�None��Status:�Concrete class��48.1	Attributes

This class has all the attributes of its base classes, with identical semantics, except for the following attribute:

SelectionStatus�Rendering of a SwitchButton object shall depend on the SelectionStatus attribute.

When the SelectionStatus attribute and the EngineResp are both True, the SwitchButton shall be rendered in a way that signals to the user that selection has taken place. This rendering shall depict a radio button or a checkbox that has been selected, or a push button that has been pressed, depending on the ButtonStyle attribute. In all other cases, the Button shall be rendered in a way that signals to the user that selection has not taken place. This rendering shall depict a radio button or a checkbox that has not been selected, or a button that has not been pressed.��48.1.1	Inherited attributes

This class has all the attributes of its base classes, with identical semantics.

48.1.2	Own exchanged attributes

This class defines the following additional exchanged attribute:

ButtonStyle�Presentation style of the SwitchButton.

•	Possible values: pushbutton | radiobutton | checkbox.��48.1.3	Own internal attributes

This class defines no additional internal attributes.

48.2	Events

This class has the same events as its base class, with identical semantics.

48.3	Internal behaviours

This class has the same internal behaviours as its base class, with identical semantics.

�48.4	Effect of MHEG-5 actions

This class has the same set of MHEG-5 actions as its base class, with identical semantics. In addition, the following applicable MHEG-5 actions are defined:

GetSelectionStatus�(SelectionStatus-Var)�Return the value of the SelectionStatus attribute in the form of a Boolean in the Variable referenced by the SelectionStatusVar parameter.

Provisions of use:

•	The Target object shall be an available SwitchButton object.

•	SelectionStatusVar shall refer to an active BooleanVariable object.���Syntax description:���GetSelectionStatus�-->�Target,�����SelectionStatusVar���Target�-->�GenericObjectReference���SelectionStatusVar�-->�ObjectReference�����Select�If the SelectionStatus attribute is True, disregard this action. Otherwise, invoke the Selection behaviour.��Deselect�If the SelectionStatus attribute is False, disregard this action. Otherwise, invoke the Deselection behaviour.

Provision of use:

•	The Target object shall be an available SwitchButton object.

Syntax description:���Deselect�-->�Target���Target�-->�GenericObjectReference�����Toggle�If the SelectionStatus attribute is False, invoke the Selection behaviour. Otherwise, invoke the Deselection behaviour.

Provision of use:

•	The Target object shall be an available SwitchButton object.

Syntax description:���Toggle�-->�Target���Target�-->�GenericObjectReference������

SetLabel�Execute the following sequence of actions:

1)	Set the Label attribute to the new value.

2)	If the Target SwitchButton is active, redraw the SwitchButton taking into account the new value of Label attribute and according to its position on the DisplayStack of the active Application object.

Provision of use:

•	The Target object shall be an available SwitchButton object.

The syntax of this action is defined in the PushButton class.��48.5	Formal description

SwitchButton Class�-->�PushButton Class,����ButtonStyle��ButtonStyle�--> �pushbutton | radiobutton | checkbox ��49	Action Class

Description:�The Action class is a list of elementary actions that are intended to be executed synchronously.

The Action class does not inherit from any MHEG-5 class; as a result, Action objects cannot be referenced individually.��Base class:�None��Subclasses:�None��Status:�Concrete class��49.1	Attributes

This subclause defines the inherited, exchanged and internal attributes of this class.

49.1.1	Inherited attributes

This class has no inherited attributes.

49.1.2	Own exchanged attributes

This class defines the following exchanged attribute:

ElementaryActions�List of included elementary actions��49.2	Own internal attributes

This class defines no internal attribute.

�49.3	Formal description

Action Class�-->�ElementaryAction+��ElementaryAction�-->�Activate | Add | AddItem | Append | BringToFront | Call | CallActionSlot | Clear | Clone | CloseConnection | Deactivate | DelItem | Deselect | DeselectItem | Divide | DrawArc | DrawLine | DrawOval | DrawPolygon | DrawPolyline | DrawRectangle |DrawSector | Fork | GetAvailabilityStatus | GetBoxSize | GetCellItem | GetCursorPosition | GetEngineSupport | GetEntryPoint | GetFillColour | GetFirstItem | GetHighlightStatus | GetInteractionStatus | GetItemStatus | GetLabel | GetLastAnchorFired | GetLineColour | GetLineStyle | GetLineWidth | GetListItem | GetListSize | GetOverwriteMode | GetPortion | GetPosition | GetRunningStatus | GetSelectionStatus | GetSliderValue | GetTextContent | GetTextData | GetTokenPosition | GetVolume | Launch | LockScreen | Modulo | Move | MoveTo | Multiply | OpenConnection | Preload | PutBefore | PutBehind | Quit | ReadPersistent | Run | ScaleBitmap | ScaleVideo | ScrollItems | Select | SelectItem | SendEvent | SendToBack | SetBoxSize | SetCachePriority | SetCounterEndPosition | SetCounterPosition | SetCounterTrigger | SetCursorPosition | SetCursorShape | SetData | SetEntryPoint | SetFillColour | SetFirstItem | SetFontRef | SetHighlightStatus | SetInteractionStatus | SetLabel | SetLineColour | SetLineStyle | SetLineWidth | SetOverwriteMode | SetPaletteRef | SetPortion | SetPosition | SetSliderValue | SetSpeed | SetTimer | SetTransparency | SetVariable | SetVolume | Spawn | Step | Stop | StorePersistent | Subtract | TestVariable | Toggle | ToggleItem | TransitionTo | Unload | UnlockScreen�

�NOTE – The semantics and syntax of the elementary actions are provided earlier in this Recommendation.

50	Referencing Objects, Content, Values, Colour and XYPosition

50.1	ObjectReference

Description�This data type is used for referencing objects. The object referenced shall be visible to the object from which the reference is made. This means that the object shall be either an Application or Scene object, or shall be part of either the active Application or the active Scene.���The reference consists of an optional GroupIdentifier and an ObjectNumber. The default value for the GroupIdentifier is the GroupIdentifier of the Scene or Application object from which the reference was made.��

ObjectReference�-->�GroupIdentifier?,����ObjectNumber��GroupIdentifier�-->�OctetString��ObjectNumber�-->�INTEGER���50.2	ContentReference

Description�This data type is used for referencing external sources of data. The ContentReference consists of an OctetString.��

ContentReference�-->�OctetString��50.3	GenericObjectReference

Description�Data type that allows either direct reference to an object or indirect reference via a Variable object.

In the case of direct reference, this reference resolves to an ObjectReference directly to the target object.

In the case of indirect reference, this reference resolves to an ObjectReference to an ObjectRefVariable object. That ObjectRefVariable object shall then contain either an ObjectReference to the target object or NULL.��

GenericObjectReference�-->�DirectReference |

IndirectReference��DirectReference �-->�ObjectReference��IndirectReference�-->�ObjectReference��50.4	GenericContentReference

Description�Data type that allows either direct reference to an external source of data or indirect reference via a Variable object.

In the case of direct reference, this reference resolves to a ContentReference directly.

In the case of indirect reference, this reference resolves to an ObjectReference to a ContentRefVariable object. That ContentRefVariable object shall then contain either a ContentReference to the content or NULL.��

GenericContentReference�-->�DirectContentReference | IndirectReference��DirectContentReference�-->�ContentReference��IndirectReference�-->�ObjectReference��50.5	GenericInteger

Description�Data type that allows either direct inclusion of an Integer or reference to an IntegerVariable object. ��

GenericInteger�-->�Value | IndirectReference��Value�-->�INTEGER��IndirectReference�-->�ObjectReference���50.6	GenericBoolean

Description�Data type that allows either direct inclusion of a Boolean or reference to a BooleanVariable object. ��

GenericBoolean�-->�Value | IndirectReference��Value�-->�BOOLEAN��IndirectReference�-->�ObjectReference��50.7	GenericOctetString

Description�Data type that allows either direct inclusion of an OctetString or reference to an OctetStringVariable object. ��

GenericOctetString�-->�Value | IndirectReference��Value�-->�OctetString��IndirectReference�-->�ObjectReference��50.8	Colour

Description�Data type used to specify a colour by a name (an OctetString) or by an index (an Integer referencing a palette object).��

Colour�-->�ColourIndex | AbsoluteColour��ColourIndex�-->�INTEGER��AbsoluteColour�-->�OctetString��50.9	XYPosition

Description�Data type used to specify the (X,Y) position in a Scene coordinate system.��

XYPosition�-->�XPosition,

Yposition��Xposition�-->�INTEGER��Yposition�-->�INTEGER��50.10	Resolution of generic values

Generic values (GenericContentReference, GenericObjectReference, GenericInteger, GenericBoolean, and GenericOctetString) are used only as parameters to elementary actions. The resolution takes place when the action is invoked. As an example, consider an IntegerVariable, V, that is initially set to 10. If the following actions are invoked:

1)	set V to 15;

2)	set a Slider’s Value to V;

3)	set V to 20,

the Slider’s Value will be set to 15. In other words, the Slider’s value is set by value, not by reference.

�51	Referencing MHEG-5 Objects

References to MHEG-5 objects are represented by ObjectReferences. At any time, an ObjectReference shall be resolved by taking into account both the MHEG-5 Group object that contains this reference (a Scene or an Application) and the content of the GroupIdentifier and ObjectNumber attributes of the ObjectReference.

The following presents how the ObjectReference shall be encoded according to the Group of origin and the nature of the referenced MHEG-5 object:

i)	Within a Scene object

a)	Reference to an Ingredient of the active Scene:

1)	The GroupIdentifier may or may not be encoded.

2)	The ObjectNumber shall contain the object number of the Ingredient within the Scene.

b)	Reference to a shared Ingredient of the active Application:

1)	The GroupIdentifier shall contain the group identifier of the active Application object.

2)	The ObjectNumber shall contain the object number of the Ingredient within the Application object.

c)	Reference to the active Scene itself:

1)	The GroupIdentifier need not be encoded.

2)	The ObjectNumber shall be set to 0.

d)	Reference to another Scene:

1)	The GroupIdentifier shall contain the group identifier of the Referenced Scene object.

2)	The ObjectNumber shall be set to 0.

e)	Reference to the active Application:

1)	The GroupIdentifier shall contain the group identifier of the active Application object.

2)	The ObjectNumber shall be set to 0.

f)	Reference to another Application object:

1)	The GroupIdentifier shall contain the group identifier of the referenced Application object.

2)	The ObjectNumber shall be set to 0.

ii)	Within an Application object

a)	Reference to an Ingredient of the Application group:

1)	The GroupIdentifier may or may not be encoded.

2)	The ObjectNumber shall contain the unique object number of the Ingredient within the Application.

�b)	Reference to a Scene:

1)	The GroupIdentifier shall contain the group identifier of the referenced Scene object.

2)	The ObjectNumber shall be set to 0.

c)	Reference to the Application itself:

1)	The GroupIdentifier need not be encoded.

2)	The ObjectNumber shall be set to 0.

d)	Reference to another Application object:

1)	The GroupIdentifier shall contain the group identifier of the referenced Application object.

2)	The ObjectNumber shall be set to 0.

This Recommendation does not define the actual encoding of the GroupIdentifier OctetString. Every MHEG-5 application domain shall define specific forms of the GroupIdentifier.

52	Name Spaces, RemoteProgram Calls and Connections

The MHEG-5 engine has a default name space, which is the name space of the active Application object. All other Application objects that can be reached from it (by Launch or Spawn) shall also be in that name space. This name space, in a wide sense, also should include enough information to perform remote calls to named methods through the MHEG-5 Program objects.

NOTE – In Appendix I, an explanation may be found on how the MHEG-5 engine attaches to this name space.

However, it is also possible for an MHEG-5 application to connect to another name space temporarily, using the OpenConnection action. That new name space may be used for named method calls (through the MHEG-5 Program objects) and in order to access an MHEG-5 Scene object that is located in a name space other than that of its Application object. The following rules apply to the references to and from such a Scene object:

1)	The reference to a Scene object in a name space other than that of the Application object shall be encoded within a TransitionTo action of which the ConnectionTag parameter indicates the connection with the entity that administers that other name space.

2)	All ContentReferences from that Scene object shall be interpreted in the «other» name space.

3)	All GroupIdentifier references from that Scene object shall be interpreted in the default name space, except as indicated by rule 1) above.

Reminder: Whether or not the MHEG-5 engine shall implement the OpenConnection and CloseConnection actions is a decision of the application domain.

53	Event handling

53.1	Types of events

This Recommendation defines the following events: IsAvailable, ContentAvailable, IsDeleted, IsRunning, IsStopped, TestEvent, UserInput, TimerFired, AsynchStopped, InteractionCompleted, TokenMovedFrom, TokenMovedTo, FirstItemPresented, LastItemPresented, HeadItems, TailItems, ItemSelected, ItemDeselected, StreamEvent, StreamPlaying, StreamStopped, CounterTrigger, HighlightOn, HighlightOff, CursorEnter, CursorLeave, AnchorFired, IsSelected, IsDeselected, EntryFieldFull, EngineEvent.

�An event always emanates from one specific object, called the event source. The semantics of each MHEG-5 class define the circumstances under which an object of that class generates a specific event.

Some of the event types above have associated with them a data value. That value is used in order to determine whether the associated Link should fire, as described below. The following table lists the data value associated with each event type:

Event Type�Associated data�Associated value type��AnchorFired�AnchorTag�OctetString��CounterTrigger�Identifier�INTEGER��EngineEvent�EventTag�INTEGER��FirstItemPresented�Index�BOOLEAN��HeadItems�Number of items�INTEGER��ItemDeselected�Index�INTEGER��ItemSelected�Index�INTEGER��LastItemPresented�Index�BOOLEAN��StreamEvent�StreamEventTag�OctetString��TailItems�Number of items�INTEGER��TestEvent�TestResult�BOOLEAN��TimerFired�TimerIdentifier�INTEGER��TokenMovedFrom�Index�INTEGER��TokenMovedTo�Index�INTEGER��UserInput�UserInputEventTag�INTEGER��All others�None�N/A��Events which types have associated data must always be generated with that data. E.g. when a TimerFired event is generated, it must be accompanied by the TimerIdentifier.

53.2	Synchronous events and asynchronous events

Events may occur for two reasons.

1)	A process that is asynchronous to the MHEG-5 engine produces an event.

	The resulting event is then called asynchronous. Asynchronous events are all events of the types AnchorFired, AsynchStopped, ContentAvailable, CounterTrigger, CursorEnter, CursorLeave, EngineEvent, EntryFieldFull, InteractionCompleted, StreamEvent, StreamPlaying, StreamStopped, TimerFired and UserInput.

2)	The event is the direct result of the execution of an elementary action.

	The resulting event is then called synchronous. Synchronous events are all events of the types FirstItemPresented, HeadItems, HighlightOff, HighlightOn, IsAvailable, IsDeleted, IsDeselected, IsRunning, IsSelected, IsStopped, ItemDeselected, ItemSelected, LastItemPresented, TailItems, TestEvent, TokenMovedFrom and TokenMovedTo. The semantics of the classes of this Recommendation explicitly state when such an event is generated.

�53.3	Event handling and Links

Every MHEG-5 Link has a LinkCondition and a LinkEffect. When the MHEG-5 engine examines an event that has occurred, it shall check all active Links (of the active Application and Scene objects) to see if their EventType and EventSource attributes match the type and source of the event in question. For each of the Links that fulfil this condition, the associated data of the event is checked against the optional EventData attribute of the Link. Links that fulfil this condition as well (or that fulfil it by default since they have no EventData) are said to be fired.

The MHEG-5 engine is driven by the occurrence of asynchronous events. At the occurrence of an asynchronous event, the MHEG-5 engine shall examine all active Links of the active Application and Scene objects to determine if they have fired. For each of the fired Links, the elementary actions of its LinkEffect shall be stored in a queue for sequential execution. This Recommendation does not specify the order in which two Links that fire on the same event are to be handled.

Default error handling is the following: if one of the aforementioned elementary action produces an error, that elementary action shall be ignored. It is however allowed for an application domain to use EngineEvent events to indicate the error situation to the MHEG-5 application (e.g. to send an error message).

As a direct result of a LinkEffect being executed, synchronous events may occur. These events shall be dealt with directly by the MHEG-5 engine. In other words, after the execution of each elementary action, the MHEG-5 engine shall check if any additional Links have fired as the result of a synchronous events occurring. If this is the case, that Link and all its effects shall be completely processed before the MHEG-5 engine continues to process the next elementary action of the original Link.

Any asynchronous events (such as a UserInput event) that occur while the original asynchronous events are being processed are not dealt with until after the completion of the entire process above. The asynchronous events which are not handled are queued.

Actions that change the context of the current action processing will influence both the queue of asynchronous events and the queue of actions waiting for processing. The context is changed by "TransitionTo", "Launch", "Spawn" and "Quit" actions. If such an action occurs, the pending asynchronous events whose origin is after the context switch shall be removed from the asynchronous event queue. Elementary actions waiting for execution shall be removed from the action queue as well.

In this context, it should be noted that some MHEG-5 actions, such as Run, have an effect that continues after the completion of the action itself. For example, when a Bitmap object is run, the Run action returns as soon as the Bitmap has been displayed, thus allowing the Link processor to continue its work. The effect of the action (i.e. that the bitmap is on the screen) still continues after the completion of the action.

Another important aspect is that it is possible for a Link to deactivate itself in its LinkEffect. Such an action shall be postponed until the LinkEffect has been completely executed.

53.4	User input

This Recommendation specifies neither the user input devices nor the types of events that are generated. The «raw» user input received by the MHEG-5 engine (for instance in the form of remote control commands) shall be translated by the engine, where appropriate, into occurrences of UserInput events. These events all have a tag, which specifies which UserInput event has occurred. The tag is an Integer; the semantics of the tag are defined by an InputEventRegister attached to the Scene object.

�Once the MHEG-5 engine has translated the raw user input into one or more UserInput events, such events are treated as asynchronous events by the engine as described above.

53.5	User interaction

MHEG-5 objects that belong to the Interactible class may be in a certain state, called «interacting», which is signalled by the InteractionStatus attribute of the object being True. When an object is in this state, no UserInput events shall be generated by the MHEG-5 engine. The reason for this rule is that the MHEG-5 engine might need to use the «raw» user input in order to interact with the Interactible, and therefore may not be able to generate the normal UserInput events.

At all times, at most, one object shall be interacting.

However, all other events are still generated. This makes it possible, for instance, to implement time-outs.

53.6	Cursor events

CursorLeave and CursorEnter events defined earlier need the following precision. It may occur that a cursor moves from one area defined by an active Interactible immediately to another area defined by another active Interactible; that may be the case, for instance, when one area is on top of the other, that is when one area is above the other in the DisplayStack and they overlap. In such case, a CursorLeave event shall be generated by the former Interactible (the topmost of the two in the DisplayStack), followed by a CursorEnter event generated by the latter Interactible (the lower one in the DisplayStack).

Cursor events have also to be generated if an active Interactible is moved beneath the cursor position, or if an Interactible beneath the cursor position becomes active, or if the stacking order of Interactibles beneath the cursor position changes in such a way that the topmost Interactible beneath the cursor position is changed.

In general, only one active Interactible per time can have the cursor in its bounding box. This has to be reflected by appropriate sequences of CursorLeave and CursorEnter events.

Finally, it should also be recalled here that an inactive Interactible shall not generate any cursor events.

53.7	Error handling

In general, default error mechanism of the MHEG-5 engine consists in ignoring the cause of the error and continuing to the next step. For instance, if an interchanged object is an instance of a class that the MHEG-5 engine does not recognize, the object shall be ignored. Any subsequent action that may occur in relation with this object and that produces an error shall be ignored. More generally, any cause of error (e.g. in an elementary action) shall result in ignoring that cause (e.g. the elementary action).

However, as mentioned earlier, it is allowed for an application domain to use EngineEvent events to indicate the error situation to the MHEG-5 application (e.g. to send to an error message).

54	Rendering Visibles

54.1	Coordinate system

This subclause describes the semantics associated with displaying objects of classes that inherit from the Visible class. The MHEG-5 engine shall have access to exactly one display, which is called the �«screen» in the rest of this subclause. The screen is an orthogonal coordinate system, with an x axis from left to right and a y axis from top to bottom. The origin is in the top left corner. Depending on the SceneCoordinateSystem and AspectRatio attributes of the currently active Scene object, the coordinate system may have different sizes and aspect ratios.

54.2	Bounding box

Each Visible has a bounding box, specified by the internal attributes Position and BoxSize. These are both expressed in the Scene coordinate space. The contents of the Visible shall be anchored to the top left corner of the bounding box. Furthermore, the contents of the Visible shall be clipped so that no parts that fall outside the bounding box are rendered. The clipping shall be performed in the following fashion:

a)	For Text and its subclasses, the clipping is performed in such a way that the positioning of the text within the bounding box is respected. Here, only the case where LineOrientation is horizontal is explained; the vertical case is obtained analogously.

•	Horizontal justification:

	If the Text object has a TextWrapping attribute set to True, its content is split into as many lines as are needed in order to fit into the bounding box. In addition, if the HorizontalJustification attribute of the Text object is set to justified, the lines are displayed so that their beginning is aligned with the left edge of the bounding box and that their end is aligned with the right edge of the bounding box.

	If the TextWrapping attribute is set to False, the following rules apply for horizontal justification:

–	If HorizontalJustification is set to start, the lines are clipped so that the beginning of each line is aligned with the left edge of the bounding box.

–	If HorizontalJustification is set to end, the lines are clipped so that the end of each line is aligned with the right edge of the bounding box.

–	If HorizontalJustification is set to centre, the lines are clipped on both sides, so that the centre of each line is aligned with a virtual vertical line at the centre of the bounding box.

•	Vertical Justification:

	For a Text that has the VerticalJustification attribute set to end, its content is clipped so that the end of the text is aligned with the bottom of the bounding box; thus, the beginning of the text is obscured. Conversely, if VerticalJustification is set to start, the text is clipped so that its end is obscured. Finally, if VerticalJustification is set to centre, the text is clipped so that the centre of the text is aligned with the centre of the bounding box, meaning that both beginning and end are obscured.

•	Background Colour:

	If the text object has a background colour other than transparent, its entire bounding box shall be filled with that colour, whether or not the text fills the bounding box.

b)	For Slider, Rectangle, and subclasses of Button, the object is not clipped but rather scaled to fit exactly within its bounding box.

c)	Other Visibles are clipped so that their top left corner is positioned at the top left corner of the bounding box. For these Visibles, some part of the bounding box may be empty; that part shall then be transparent.

�54.3	Display stack

The MHEG-5 engine shall implement a display stack. Each Visible is initially rendered according to its position in the DisplayStack attribute of the current Application object. Visibles may be moved up and down in the display stack using the actions BringToFront, SendToBack, PutBefore and PutBehind. When a Visible is moved in this way, (parts of) other Visibles may be obscured or uncovered. The display shall then be updated accordingly.

54.4	Transparent objects

Transparency of objects are specified with an Integer in the range [0, 100] (percent). Interpreting the integer between 1 and 99 depends on the implementation, and this Recommendation does not define it. Neither the actual rendering and display accuracy, nor the algorithms used to perform these tasks are specified by this Recommendation. However, transparency values of 0% and 100% are specified; they are defined as follows.

Objects of 0% transparency shall be rendered as non-transparent objects, i.e. the original colours shall be rendered without any modification. Objects of 100% transparency shall be rendered as completely transparent objects, i.e. the original colours shall not be rendered, and the background shall be perceived.

i)	For each location in the Scene coordinate space, at most the N objects whose bounding boxes contain that location are considered. These objects are ordered in the so-called display stack. Let’s call the objects O1, O2, [...], ON. where ON denotes the topmost object.

ii)	The computation of the final pixel value is done from the bottom of the stack. The pixel value after taking into account j objects is called Vj. The final pixel value, therefore, is called VN.

iii)	The computation of the pixel value starts from a completely black background. Therefore, V0 = <black>.

iv)	For a j taking successively the values 1 through N, the following is performed:

a)	If the pixel value of Oj to be considered is called Pj and is p percent translucent:

		� EMBED Word.Picture.6 ���

	This formula may be applied to all colour components of a pixel if the colour space is not based on the luminance and colour difference signals (RGB is such a case). However, this formula must be applied only to the luminance of a pixel if the colour space is based on the luminance and colour difference signals such as YUV. In addition, the values in this formula are all assumed to be expressed in one and the same linear colour space. If a non-linear colour space is used, this formula may be taken into account for the precise rendering.

b)	Specifically, if the pixel is completely transparent (invisible):

		Vj = Vj(1.

c)	Specifically, if the pixel is completely opaque:

		Vj = Pj.

This model shall not be understood to mandate any specific rendering and/or display process in a specific implementation of an MHEG-5 engine. Its sole purpose is to define unambiguously what the semantics are of combining different transparent graphics objects. Neither the actual rendering and display accuracy, nor the algorithms used to perform these tasks are defined by this Recommendation.

�54.5	Pixel aspect ratio

Generally, the pixel aspect ration of a Scene and its content are assumed to be the same; a pixel of the Scene's content is then exactly mapped to a pixel of the Scene – no scaling is needed. If however the two aspect ratios are different, the MHEG-5 engine may scale the content – taking into account the two aspect ratios – in order to compensate for the presentation of the content. Note that this scaling is up to the implementation of the MHEG-5 engine and is an optional feature; this Recommendation does not define any specific way to do it.

Annex A

ASN.1 notation

This annex describes the ASN.1 notation for the syntax of MHEG-5 objects conforming to ISO/IEC 13522-5.

The encoding of the MHEG-5 objects from this ASN.1 syntax shall make use of the Distinguished Encoding Rules (DER) defined in ITU-T Rec. X.690 | ISO/IEC 8825-1. The alternative encoding is the textual notation defined in Annex B.

The syntax that shall be used in the DER is detailed below.

-- $PREFIX=ISOMHEG-mheg-5:mheg-5

-- Module: mheg-5

ISO13522-MHEG-5 {joint-iso-itu-t(2) mheg(19) version(1) mheg-5(17)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- This module defines the MHEG-5 abstract syntax which consists of data values of type:

-- ISO13522-MHEG-5.InterchangedObject.

-- This abstract syntax is identified by the name: {joint-iso-itu-t(2) mheg(19) version(1) mheg-5(17)}.

InterchangedObject ::= CHOICE

{

 application [0] ApplicationClass,

 scene [1] SceneClass

}

-- A.1 Root Class ___

RootClass ::= ObjectReference

-- A.2 Group Class __

GroupClass ::= SET

{

 RootClass (WITH COMPONENTS

 {external-reference (WITH COMPONENTS {..., object-number (0)}) PRESENT,

 internal-reference ABSENT}),

 standard-identifier [2] StandardIdentifier OPTIONAL,

 standard-version [3] INTEGER (1) OPTIONAL,

 object-information [4] OCTET STRING OPTIONAL,

 on-start-up [5] ActionClass OPTIONAL,

 on-close-down [6] ActionClass OPTIONAL,

� original-group-cache-priority [7] INTEGER (0..255) DEFAULT 127,

 items [8] SEQUENCE SIZE (1..MAX) OF GroupItem OPTIONAL

}

StandardIdentifier ::= SEQUENCE

{

 joint-iso-itu-t INTEGER (2),

 mheg INTEGER (19)

}

GroupItem ::= CHOICE

{

 resident-program [9] ResidentProgramClass,

 remote-program [10] RemoteProgramClass,

 interchanged-program [11] InterchangedProgramClass,

 palette [12] PaletteClass,

 font [13] FontClass,

 cursor-shape [14] CursorShapeClass,

 boolean-variable [15] BooleanVariableClass,

 integer-variable [16] IntegerVariableClass,

 octet-string-variable [17] OctetStringVariableClass,

 object-ref-variable [18] ObjectRefVariableClass,

 content-ref-variable [19] ContentRefVariableClass,

 link [20] LinkClass,

 stream [21] StreamClass,

 bitmap [22] BitmapClass,

 line-art [23] LineArtClass,

 dynamic-line-art [24] DynamicLineArtClass,

 rectangle [25] RectangleClass,

 hotspot [26] HotspotClass,

 switch-button [27] SwitchButtonClass,

 push-button [28] PushButtonClass,

 text [29] TextClass,

 entry-field [30] EntryFieldClass,

 hyper-text [31] HyperTextClass,

 slider [32] SliderClass,

 token-group [33] TokenGroupClass,

 list-group [34] ListGroupClass

}

-- A.3 Application Class __

ApplicationClass ::= SET

{

 COMPONENTS OF GroupClass,

 on-spawn-close-down [35] ActionClass OPTIONAL,

 on-restart [36] ActionClass OPTIONAL,

 default-attributes [37] SEQUENCE SIZE (1..MAX) OF DefaultAttribute OPTIONAL

}

DefaultAttribute ::= CHOICE

{

 character-set [38] INTEGER,

 background-colour [39] Colour,

 text-content-hook [40] INTEGER,

 text-colour [41] Colour,

 font [42] FontBody,

 font-attributes [43] OCTET STRING,

 interchanged-program-content-hook [44] INTEGER,

 stream-content-hook [45] INTEGER,

 bitmap-content-hook [46] INTEGER,

� line-art-content-hook [47] INTEGER,

 button-ref-colour [48] Colour,

 highlight-ref-colour [49] Colour,

 slider-ref-colour [50] Colour

}

FontBody ::= CHOICE

{

 direct-font OCTET STRING,

 indirect-font ObjectReference

}

-- A.4 Scene Class __

SceneClass ::= SET

{

 COMPONENTS OF GroupClass,

 input-event-register [51] INTEGER,

 scene-coordinate-system [52] SceneCoordinateSystem,

 aspect-ratio [53] AspectRatio DEFAULT {width 4, height 3},

 moving-cursor [54] BOOLEAN DEFAULT FALSE,

 next-scenes [55] SEQUENCE SIZE (1..MAX) OF NextScene OPTIONAL

}

SceneCoordinateSystem ::= SEQUENCE

{

 x-scene INTEGER,

 y-scene INTEGER

}

AspectRatio ::= SEQUENCE

{

 width INTEGER,

 height INTEGER

}

NextScene ::= SEQUENCE

{

 scene-ref OCTET STRING,

 scene-weight INTEGER (0..255)

}

-- A.5 Ingredient Class __

IngredientClass ::= SET

{

 RootClass (WITH COMPONENTS

 {..., external-reference (WITH COMPONENTS {..., object-number (1..MAX)})}),

 initially-active [56] BOOLEAN DEFAULT TRUE,

 content-hook [57] INTEGER OPTIONAL,

 original-content [58] ContentBody OPTIONAL,

 shared [59] BOOLEAN DEFAULT FALSE

}

ContentBody ::= CHOICE

{

 included-content OCTET STRING,

 referenced-content ReferencedContent

}

�ReferencedContent ::= SEQUENCE

{

 content-reference ContentReference,

 content-size [60] INTEGER OPTIONAL,

 content-cache-priority [61] INTEGER (0..255) DEFAULT 127

}

-- A.6 Link Class __

LinkClass ::= SET

{

 COMPONENTS OF IngredientClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT}),

 link-condition [62] LinkCondition,

 link-effect [63] ActionClass

}

LinkCondition ::= SEQUENCE

{

 event-source ObjectReference,

 event-type EventType,

 event-data EventData OPTIONAL

}

EventType ::= ENUMERATED

{

 is-available(1),

 content-available(2),

 is-deleted(3),

 is-running(4),

 is-stopped(5),

 user-input(6),

 anchor-fired(7),

 timer-fired(8),

 asynch-stopped(9),

 interaction-completed(10),

 token-moved-from(11),

 token-moved-to(12),

 stream-event(13),

 stream-playing(14),

 stream-stopped(15),

 counter-trigger(16),

 highlight-on(17),

 highlight-off(18),

 cursor-enter(19),

 cursor-leave(20),

 is-selected(21),

 is-deselected(22),

 test-event(23),

 first-item-presented(24),

 last-item-presented(25),

 head-items(26),

 tail-items(27),

 item-selected(28),

 item-deselected(29),

 entry-field-full(30),

 engine-event(31)

}

�EventData ::= CHOICE

{

 octetstring OCTET STRING,

 boolean BOOLEAN,

 integer INTEGER

}

-- A.7 Program Class __

ProgramClass ::= SET

{

 COMPONENTS OF IngredientClass

 (WITH COMPONENTS {..., initially-active (FALSE) PRESENT}),

 name [64] OCTET STRING,

 initially-available [65] BOOLEAN DEFAULT TRUE

}

-- A.8 Resident Program Class ___

ResidentProgramClass ::= ProgramClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT})

-- A.9 Remote Program Class ___

RemoteProgramClass ::= SET

{

 COMPONENTS OF ProgramClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT}),

 program-connection-tag [66] INTEGER OPTIONAL

}

-- A.10 Interchanged Program Class ____________________________________

InterchangedProgramClass ::= ProgramClass

 (WITH COMPONENTS {..., original-content PRESENT})

-- A.11 Palette Class ___

PaletteClass ::= IngredientClass

 (WITH COMPONENTS

 {..., content-hook PRESENT, original-content PRESENT, initially-active (TRUE)})

-- A.12 Font Class __

FontClass ::= IngredientClass

 (WITH COMPONENTS

 {..., content-hook PRESENT, original-content PRESENT, initially-active (TRUE)})

-- A.13 Cursor Shape __

CursorShapeClass ::= IngredientClass

 (WITH COMPONENTS

 {..., content-hook PRESENT, original-content PRESENT, initially-active (TRUE)})

-- A.14 Variable Class __

VariableClass ::= SET

{

 COMPONENTS OF IngredientClass

� (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT, initially-active (TRUE)}),

 original-value [67] OriginalValue

}

OriginalValue ::= CHOICE

{

 boolean BOOLEAN,

 integer INTEGER,

 octetstring OCTET STRING,

 object-reference [68] ObjectReference,

 content-reference [69] ContentReference

}

-- A.15 Boolean Variable Class __

BooleanVariableClass ::= VariableClass

 (WITH COMPONENTS {..., original-value (WITH COMPONENTS {..., boolean PRESENT})})

-- A.16 Integer Variable Class __

IntegerVariableClass ::= VariableClass

 (WITH COMPONENTS {..., original-value (WITH COMPONENTS {..., integer PRESENT})})

-- A.17 Octet String Variable Class ___________________________________

OctetStringVariableClass ::= VariableClass

 (WITH COMPONENTS {..., original-value (WITH COMPONENTS {..., octetstring PRESENT})})

-- A.18 Object Reference Variable Class _______________________________

ObjectRefVariableClass ::= VariableClass

 (WITH COMPONENTS {..., original-value (WITH COMPONENTS {..., object-reference PRESENT})})

-- A.19 Content Reference Variable Class ______________________________

ContentRefVariableClass ::= VariableClass

 (WITH COMPONENTS {..., original-value (WITH COMPONENTS {..., content-reference PRESENT})})

-- A.20 Presentable Class ___

PresentableClass ::= IngredientClass

-- A.21 Token Manager Class ___

TokenManagerClass ::= SET

{

 movement-table [70] SEQUENCE SIZE (1..MAX) OF Movement OPTIONAL

}

Movement ::= SEQUENCE SIZE (1..MAX) OF INTEGER

-- A.22 Token Group Class ___

TokenGroupClass ::= SET

{

 COMPONENTS OF PresentableClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT}),

 COMPONENTS OF TokenManagerClass,

 token-group-items [71] SEQUENCE SIZE (1..MAX) OF TokenGroupItem,

 no-token-action-slots [72] SEQUENCE SIZE (1..MAX) OF ActionSlot OPTIONAL

}

�TokenGroupItem ::= SEQUENCE

{

 a-visible ObjectReference,

 action-slots SEQUENCE SIZE (1..MAX) OF ActionSlot OPTIONAL

}

ActionSlot ::= CHOICE

{

 action-class ActionClass,

 null NULL

}

-- A.23 List Group Class __

ListGroupClass ::= SET

{

 COMPONENTS OF TokenGroupClass,

 positions [73] SEQUENCE SIZE (1..MAX) OF XYPosition,

 wrap-around [74] BOOLEAN DEFAULT FALSE,

 multiple-selection [75] BOOLEAN DEFAULT FALSE

}

-- A.24 Visible Class ___

VisibleClass ::= SET

{

 COMPONENTS OF PresentableClass,

 original-box-size [76] OriginalBoxSize,

 original-position [77] XYPosition DEFAULT {x-position 0, y-position 0},

 original-palette-ref [78] ObjectReference OPTIONAL

}

OriginalBoxSize ::= SEQUENCE

{

 x-length INTEGER (0..MAX),

 y-length INTEGER (0..MAX)

}

-- A.25 Bitmap Class __

BitmapClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., original-content PRESENT}),

 tiling [79] BOOLEAN DEFAULT FALSE,

 original-transparency [80] INTEGER (0..100) DEFAULT 0

}

-- A.26 Line Art Class __

LineArtClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., original-content PRESENT}),

 bordered-bounding-box [81] BOOLEAN DEFAULT TRUE,

 original-line-width [82] INTEGER DEFAULT 1,

 original-line-style [83] INTEGER {solid(1), dashed(2), dotted(3)} DEFAULT solid,

 original-ref-line-colour [84] Colour OPTIONAL,

 original-ref-fill-colour [85] Colour OPTIONAL

}

�-- A.27 Rectangle Class ___

RectangleClass ::= LineArtClass

 (WITH COMPONENTS

 {..., content-hook ABSENT, original-content ABSENT, bordered-bounding-box ABSENT})

-- A.28 Dynamic Line Art Class __

DynamicLineArtClass ::= LineArtClass

 (WITH COMPONENTS

 {..., content-hook ABSENT, original-content ABSENT})

-- A.29 Text Class __

TextClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., original-content PRESENT}),

 original-font [86] FontBody OPTIONAL,

 font-attributes [43] OCTET STRING OPTIONAL,

 text-colour [41] Colour OPTIONAL,

 background-colour [39] Colour OPTIONAL,

 character-set [38] INTEGER OPTIONAL,

 horizontal-justification [87] Justification DEFAULT start,

 vertical-justification [88] Justification DEFAULT start,

 line-orientation [89] LineOrientation DEFAULT horizontal,

 start-corner [90] StartCorner DEFAULT upper-left,

 text-wrapping [91] BOOLEAN DEFAULT FALSE

}

Justification ::= ENUMERATED

{

 start(1),

 end(2),

 centre(3),

 justified(4)

}

LineOrientation ::= ENUMERATED {vertical(1), horizontal(2)}

StartCorner ::= ENUMERATED

{

 upper-left(1),

 upper-right(2),

 lower-left(3),

 lower-right(4)

}

-- A.30 Stream Class __

StreamClass ::= SET

{

 COMPONENTS OF PresentableClass

 (WITH COMPONENTS {..., original-content PRESENT}),

 multiplex [92] SEQUENCE SIZE (1..MAX) OF StreamComponent,

 storage [93] Storage DEFAULT stream,

 looping [94] INTEGER {infinity(0)} DEFAULT 1

}

�StreamComponent ::= CHOICE

{

 audio [95] AudioClass,

 video [96] VideoClass,

 rtgraphics [97] RTGraphicsClass

}

Storage ::= ENUMERATED {memory(1), stream(2)}

-- A.31 Audio Class ___

AudioClass ::= SET

{

 COMPONENTS OF PresentableClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT, shared ABSENT}),

 component-tag [98] INTEGER,

 original-volume [99] INTEGER DEFAULT 0

}

-- A.32 Video Class ___

VideoClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT, shared ABSENT, original-palette-ref ABSENT}),

 component-tag [98] INTEGER,

 termination [100] Termination DEFAULT disappear

}

Termination ::= ENUMERATED {freeze(1), disappear(2)}

-- A.33 RTGraphics Class __

RTGraphicsClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT, shared ABSENT}),

 component-tag [98] INTEGER,

 termination [100] Termination DEFAULT disappear

}

-- A.34 Interactible Class __

InteractibleClass ::= SET

{

 engine-resp [101] BOOLEAN DEFAULT TRUE,

 highlight-ref-colour [49] Colour OPTIONAL

}

-- A.35 Slider Class __

SliderClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT}),

 COMPONENTS OF InteractibleClass,

 orientation [102] Orientation,

 max-value [103] INTEGER,

 min-value [104] INTEGER DEFAULT 1,

 initial-value [105] INTEGER OPTIONAL,

� initial-portion [106] INTEGER OPTIONAL,

 step-size [107] INTEGER DEFAULT 1,

 slider-style [108] SliderStyle DEFAULT normal,

 slider-ref-colour [50] Colour OPTIONAL

}

Orientation ::= ENUMERATED {left(1), right(2), up(3), down(4)}

SliderStyle ::= ENUMERATED {normal(1), thermometer(2), proportional(3)}

-- A.36 Entry Field Class ___

EntryFieldClass ::= SET

{

 COMPONENTS OF TextClass,

 COMPONENTS OF InteractibleClass,

 input-type [109] InputType DEFAULT any,

 char-list [110] OCTET STRING OPTIONAL,

 obscured-input [111] BOOLEAN DEFAULT FALSE,

 max-length [112] INTEGER DEFAULT 0

}

InputType ::= ENUMERATED {alpha(1), numeric(2), any(3), listed(4)}

-- A.37 Hyper Text Class __

HyperTextClass ::= SET

{

 COMPONENTS OF TextClass,

 COMPONENTS OF InteractibleClass

}

-- A.38 Button Class __

ButtonClass ::= SET

{

 COMPONENTS OF VisibleClass

 (WITH COMPONENTS {..., content-hook ABSENT, original-content ABSENT}),

 COMPONENTS OF InteractibleClass,

 button-ref-colour [48] Colour OPTIONAL

}

-- A.39 Hotspot Class ___

HotspotClass ::= ButtonClass

-- A.40 Push Button Class ___

PushButtonClass ::= SET

{

 COMPONENTS OF ButtonClass,

 original-label [113] OCTET STRING OPTIONAL,

 character-set [38] INTEGER OPTIONAL

}

-- A.41 Switch Button Class ___

SwitchButtonClass ::= SET

{

� COMPONENTS OF PushButtonClass,

 button-style [114] ButtonStyle

}

ButtonStyle ::= ENUMERATED

{

 pushbutton(1),

 radiobutton(2),

 checkbox(3)

}

-- A.42 Action Class __

ActionClass ::= SEQUENCE SIZE (1..MAX) OF ElementaryAction

ElementaryAction ::= CHOICE

{

 activate [115] GenericObjectReference,

 add [116] Add,

 add-item [117] AddItem,

 append [118] Append,

 bring-to-front [119] GenericObjectReference,

 call [120] Call,

 call-action-slot [121] CallActionSlot,

 clear [122] GenericObjectReference,

 clone [123] Clone,

 close-connection [124] CloseConnection,

 deactivate [125] GenericObjectReference,

 del-item [126] DelItem,

 deselect [127] GenericObjectReference,

 deselect-item [128] DeselectItem,

 divide [129] Divide,

 draw-arc [130] DrawArc,

 draw-line [131] DrawLine,

 draw-oval [132] DrawOval,

 draw-polygon [133] DrawPolygon,

 draw-polyline [134] DrawPolyline,

 draw-rectangle [135] DrawRectangle,

 draw-sector [136] DrawSector,

 fork [137] Fork,

 get-availability-status [138] GetAvailabilityStatus,

 get-box-size [139] GetBoxSize,

 get-cell-item [140] GetCellItem,

 get-cursor-position [141] GetCursorPosition,

 get-engine-support [142] GetEngineSupport,

 get-entry-point [143] GetEntryPoint,

 get-fill-colour [144] GetFillColour,

 get-first-item [145] GetFirstItem,

 get-highlight-status [146] GetHighlightStatus,

 get-interaction-status [147] GetInteractionStatus,

 get-item-status [148] GetItemStatus,

 get-label [149] GetLabel,

 get-last-anchor-fired [150] GetLastAnchorFired,

 get-line-colour [151] GetLineColour,

 get-line-style [152] GetLineStyle,

 get-line-width [153] GetLineWidth,

 get-list-item [154] GetListItem,

 get-list-size [155] GetListSize,

 get-overwrite-mode [156] GetOverwriteMode,

 get-portion [157] GetPortion,

 get-position [158] GetPosition,

� get-running-status [159] GetRunningStatus,

 get-selection-status [160] GetSelectionStatus,

 get-slider-value [161] GetSliderValue,

 get-text-content [162] GetTextContent,

 get-text-data [163] GetTextData,

 get-token-position [164] GetTokenPosition,

 get-volume [165] GetVolume,

 launch [166] GenericObjectReference,

 lock-screen [167] GenericObjectReference,

 modulo [168] Modulo,

 move [169] Move,

 move-to [170] MoveTo,

 multiply [171] Multiply,

 open-connection [172] OpenConnection,

 preload [173] GenericObjectReference,

 put-before [174] PutBefore,

 put-behind [175] PutBehind,

 quit [176] GenericObjectReference,

 read-persistent [177] ReadPersistent,

 run [178] GenericObjectReference,

 scale-bitmap [179] ScaleBitmap,

 scale-video [180] ScaleVideo,

 scroll-items [181] ScrollItems,

 select [182] GenericObjectReference,

 select-item [183] SelectItem,

 send-event [184] SendEvent,

 send-to-back [185] GenericObjectReference,

 set-box-size [186] SetBoxSize,

 set-cache-priority [187] SetCachePriority,

 set-counter-end-position [188] SetCounterEndPosition,

 set-counter-position [189] SetCounterPosition,

 set-counter-trigger [190] SetCounterTrigger,

 set-cursor-position [191] SetCursorPosition,

 set-cursor-shape [192] SetCursorShape,

 set-data [193] SetData,

 set-entry-point [194] SetEntryPoint,

 set-fill-colour [195] SetFillColour,

 set-first-item [196] SetFirstItem,

 set-font-ref [197] SetFontRef,

 set-highlight-status [198] SetHighlightStatus,

 set-interaction-status [199] SetInteractionStatus,

 set-label [200] SetLabel,

 set-line-colour [201] SetLineColour,

 set-line-style [202] SetLineStyle,

 set-line-width [203] SetLineWidth,

 set-overwrite-mode [204] SetOverwriteMode,

 set-palette-ref [205] SetPaletteRef,

 set-portion [206] SetPortion,

 set-position [207] SetPosition,

 set-slider-value [208] SetSliderValue,

 set-speed [209] SetSpeed,

 set-timer [210] SetTimer,

 set-transparency [211] SetTransparency,

 set-variable [212] SetVariable,

 set-volume [213] SetVolume,

 spawn [214] GenericObjectReference,

 step [215] Step,

 stop [216] GenericObjectReference,

 store-persistent [217] StorePersistent,

 subtract [218] Subtract,

 test-variable [219] TestVariable,

� toggle [220] GenericObjectReference,

 toggle-item [221] ToggleItem,

 transition-to [222] TransitionTo,

 unload [223] GenericObjectReference,

 unlock-screen [224] GenericObjectReference

}

Add ::= SEQUENCE

{

 target GenericObjectReference,

 value GenericInteger

}

AddItem ::= SEQUENCE

{

 target GenericObjectReference,

 item-index GenericInteger,

 visible-reference GenericObjectReference

}

Append ::= SEQUENCE

{

 target GenericObjectReference,

 append-value GenericOctetString

}

Call ::= SEQUENCE

{

 target GenericObjectReference,

 call-succeeded ObjectReference,

 parameters SEQUENCE SIZE (1..MAX) OF Parameter OPTIONAL

}

CallActionSlot ::= SEQUENCE

{

 target GenericObjectReference,

 index GenericInteger

}

Clone ::= SEQUENCE

{

 target GenericObjectReference,

 clone-ref-var ObjectReference

}

CloseConnection ::= SEQUENCE

{

 target GenericObjectReference,

 connection-tag GenericInteger

}

DelItem ::= SEQUENCE

{

 target GenericObjectReference,

 visible-reference GenericObjectReference

}

DeselectItem ::= SEQUENCE

{

� target GenericObjectReference,

 item-index GenericInteger

}

Divide ::= SEQUENCE

{

 target GenericObjectReference,

 value GenericInteger

}

DrawArc ::= SEQUENCE

{

 target GenericObjectReference,

 x GenericInteger,

 y GenericInteger,

 ellipse-width GenericInteger,

 ellipse-height GenericInteger,

 start-angle GenericInteger,

 arc-angle GenericInteger

}

DrawLine ::= SEQUENCE

{

 target GenericObjectReference,

 x1 GenericInteger,

 y1 GenericInteger,

 x2 GenericInteger,

 y2 GenericInteger

}

DrawOval ::= SEQUENCE

{

 target GenericObjectReference,

 x GenericInteger,

 y GenericInteger,

 ellipse-width GenericInteger,

 ellipse-height GenericInteger

}

DrawPolygon ::= SEQUENCE

{

 target GenericObjectReference,

 pointlist SEQUENCE SIZE (1..MAX) OF Point

}

DrawPolyline ::= SEQUENCE

{

 target GenericObjectReference,

 pointlist SEQUENCE SIZE (1..MAX) OF Point

}

DrawRectangle ::= SEQUENCE

{

 target GenericObjectReference,

 x1 GenericInteger,

 y1 GenericInteger,

 x2 GenericInteger,

 y2 GenericInteger

}

�DrawSector ::= SEQUENCE

{

 target GenericObjectReference,

 x GenericInteger,

 y GenericInteger,

 ellipse-width GenericInteger,

 ellipse-height GenericInteger,

 start-angle GenericInteger,

 arc-angle GenericInteger

}

Fork ::= SEQUENCE

{

 target GenericObjectReference,

 fork-succeeded ObjectReference,

 parameters SEQUENCE SIZE (1..MAX) OF Parameter OPTIONAL

}

GetAvailabilityStatus ::= SEQUENCE

{

 target GenericObjectReference,

 availability-status-var ObjectReference

}

GetBoxSize ::= SEQUENCE

{

 target GenericObjectReference,

 x-box-size-var ObjectReference,

 y-box-size-var ObjectReference

}

GetCellItem ::= SEQUENCE

{

 target GenericObjectReference,

 cell-index GenericInteger,

 item-ref-var ObjectReference

}

GetCursorPosition ::= SEQUENCE

{

 target GenericObjectReference,

 x-out ObjectReference,

 y-out ObjectReference

}

GetEngineSupport ::= SEQUENCE

{

 target GenericObjectReference,

 feature GenericOctetString,

 answer ObjectReference

}

GetEntryPoint ::= SEQUENCE

{

 target GenericObjectReference,

 entry-point-var ObjectReference

}

�GetFillColour ::= SEQUENCE

{

 target GenericObjectReference,

 fill-colour-var ObjectReference

}

GetFirstItem ::= SEQUENCE

{

 target GenericObjectReference,

 first-item-var ObjectReference

}

GetHighlightStatus ::= SEQUENCE

{

 target GenericObjectReference,

 highlight-status-var ObjectReference

}

GetInteractionStatus ::= SEQUENCE

{

 target GenericObjectReference,

 interaction-status-var ObjectReference

}

GetItemStatus ::= SEQUENCE

{

 target GenericObjectReference,

 item-index GenericInteger,

 item-status-var ObjectReference

}

GetLabel ::= SEQUENCE

{

 target GenericObjectReference,

 label-var ObjectReference

}

GetLastAnchorFired ::= SEQUENCE

{

 target GenericObjectReference,

 last-anchor-fired-var ObjectReference

}

GetLineColour ::= SEQUENCE

{

 target GenericObjectReference,

 line-colour-var ObjectReference

}

GetLineStyle ::= SEQUENCE

{

 target GenericObjectReference,

 line-style-var ObjectReference

}

GetLineWidth ::= SEQUENCE

{

 target GenericObjectReference,

 line-width-var ObjectReference

}

�GetListItem ::= SEQUENCE

{

 target GenericObjectReference,

 item-index GenericInteger,

 item-ref-var ObjectReference

}

GetListSize ::= SEQUENCE

{

 target GenericObjectReference,

 size-var ObjectReference

}

GetOverwriteMode ::= SEQUENCE

{

 target GenericObjectReference,

 overwrite-mode-var ObjectReference

}

GetPortion ::= SEQUENCE

{

 target GenericObjectReference,

 portion-var ObjectReference

}

GetPosition ::= SEQUENCE

{

 target GenericObjectReference,

 x-position-var ObjectReference,

 y-position-var ObjectReference

}

GetRunningStatus ::= SEQUENCE

{

 target GenericObjectReference,

 running-status-var ObjectReference

}

GetSelectionStatus ::= SEQUENCE

{

 target GenericObjectReference,

 selection-status-var ObjectReference

}

GetSliderValue ::= SEQUENCE

{

 target GenericObjectReference,

 slider-value-var ObjectReference

}

GetTextContent ::= SEQUENCE

{

 target GenericObjectReference,

 text-content-var ObjectReference

}

GetTextData ::= SEQUENCE

{

 target GenericObjectReference,

 text-data-var ObjectReference

}

�GetTokenPosition ::= SEQUENCE

{

 target GenericObjectReference,

 token-position-var ObjectReference

}

GetVolume ::= SEQUENCE

{

 target GenericObjectReference,

 volume-var ObjectReference

}

Modulo ::= SEQUENCE

{

 target GenericObjectReference,

 value GenericInteger

}

Move ::= SEQUENCE

{

 target GenericObjectReference,

 movement-identifier GenericInteger

}

MoveTo ::= SEQUENCE

{

 target GenericObjectReference,

 index GenericInteger

}

Multiply ::= SEQUENCE

{

 target GenericObjectReference,

 value GenericInteger

}

OpenConnection ::= SEQUENCE

{

 target GenericObjectReference,

 open-succeeded ObjectReference,

 protocol GenericOctetString,

 address GenericOctetString,

 connection-tag GenericInteger

}

PutBefore ::= SEQUENCE

{

 target GenericObjectReference,

 reference-visible GenericObjectReference

}

PutBehind ::= SEQUENCE

{

 target GenericObjectReference,

 reference-visible GenericObjectReference

}

�ReadPersistent ::= SEQUENCE

{

 target GenericObjectReference,

 read-succeeded ObjectReference,

 out-variables SEQUENCE SIZE (1..MAX) OF ObjectReference,

 in-file-name GenericOctetString

}

ScaleBitmap ::= SEQUENCE

{

 target GenericObjectReference,

 x-scale GenericInteger,

 y-scale GenericInteger

}

ScaleVideo ::= SEQUENCE

{

 target GenericObjectReference,

 x-scale GenericInteger,

 y-scale GenericInteger

}

ScrollItems ::= SEQUENCE

{

 target GenericObjectReference,

 items-to-scroll GenericInteger

}

SelectItem ::= SEQUENCE

{

 target GenericObjectReference,

 item-index GenericInteger

}

SendEvent ::= SEQUENCE

{

 target GenericObjectReference,

 emulated-event-source GenericObjectReference,

 emulated-event-type EventType,

 emulated-event-data EmulatedEventData OPTIONAL

}

SetBoxSize ::= SEQUENCE

{

 target GenericObjectReference,

 x-new-box-size GenericInteger,

 y-new-box-size GenericInteger

}

SetCachePriority ::= SEQUENCE

{

 target GenericObjectReference,

 new-cache-priority GenericInteger

}

SetCounterEndPosition ::= SEQUENCE

{

 target GenericObjectReference,

 new-counter-end-position GenericInteger

}

�SetCounterPosition ::= SEQUENCE

{

 target GenericObjectReference,

 new-counter-position GenericInteger

}

SetCounterTrigger ::= SEQUENCE

{

 target GenericObjectReference,

 trigger-identifier GenericInteger,

 new-counter-value GenericInteger OPTIONAL

}

SetCursorPosition ::= SEQUENCE

{

 target GenericObjectReference,

 x-cursor GenericInteger,

 y-cursor GenericInteger

}

SetCursorShape ::= SEQUENCE

{

 target GenericObjectReference,

 new-cursor-shape GenericObjectReference OPTIONAL

}

SetData ::= SEQUENCE

{

 target GenericObjectReference,

 new-content NewContent

}

SetEntryPoint ::= SEQUENCE

{

 target GenericObjectReference,

 new-entry-point GenericInteger

}

SetFillColour ::= SEQUENCE

{

 target GenericObjectReference,

 new-fill-colour NewColour OPTIONAL

}

SetFirstItem ::= SEQUENCE

{

 target GenericObjectReference,

 new-first-item GenericInteger

}

SetFontRef ::= SEQUENCE

{

 target GenericObjectReference,

 new-font NewFont

}

SetHighlightStatus ::= SEQUENCE

{

 target GenericObjectReference,

 new-highlight-status GenericBoolean

}

�SetInteractionStatus ::= SEQUENCE

{

 target GenericObjectReference,

 new-interaction-status GenericBoolean

}

SetLabel ::= SEQUENCE

{

 target GenericObjectReference,

 new-label GenericOctetString

}

SetLineColour ::= SEQUENCE

{

 target GenericObjectReference,

 new-line-colour NewColour

}

SetLineStyle ::= SEQUENCE

{

 target GenericObjectReference,

 new-line-style GenericInteger

}

SetLineWidth ::= SEQUENCE

{

 target GenericObjectReference,

 new-line-width GenericInteger

}

SetOverwriteMode ::= SEQUENCE

{

 target GenericObjectReference,

 new-overwrite-mode GenericBoolean

}

SetPaletteRef ::= SEQUENCE

{

 target GenericObjectReference,

 new-palette-ref GenericObjectReference

}

SetPortion ::= SEQUENCE

{

 target GenericObjectReference,

 new-portion GenericInteger

}

SetPosition ::= SEQUENCE

{

 target GenericObjectReference,

 new-x-position GenericInteger,

 new-y-position GenericInteger

}

SetSliderValue ::= SEQUENCE

{

 target GenericObjectReference,

 new-slider-value GenericInteger

}

�SetSpeed ::= SEQUENCE

{

 target GenericObjectReference,

 new-speed Rational

}

SetTimer ::= SEQUENCE

{

 target GenericObjectReference,

 timer-id GenericInteger,

 new-timer NewTimer OPTIONAL

}

NewTimer ::= SEQUENCE

{

 timer-value GenericInteger,

 absolute-time GenericBoolean OPTIONAL

}

SetTransparency ::= SEQUENCE

{

 target GenericObjectReference,

 new-transparency GenericInteger

}

SetVariable ::= SEQUENCE

{

 target GenericObjectReference,

 new-variable-value NewVariableValue

}

SetVolume ::= SEQUENCE

{

 target GenericObjectReference,

 new-volume GenericInteger

}

Step ::= SEQUENCE

{

 target GenericObjectReference,

 nb-of-steps GenericInteger

}

StorePersistent ::= SEQUENCE

{

 target GenericObjectReference,

 store-succeeded ObjectReference,

 in-variables SEQUENCE SIZE (1..MAX) OF ObjectReference,

 out-file-name GenericOctetString

}

Subtract ::= SEQUENCE

{

 target GenericObjectReference,

 value GenericInteger

}

�TestVariable ::= SEQUENCE

{

 target GenericObjectReference,

 operator GenericInteger,

 comparison-value ComparisonValue

}

ToggleItem ::= SEQUENCE

{

 target GenericObjectReference,

 item-index GenericInteger

}

TransitionTo ::= SEQUENCE

{

 target GenericObjectReference,

 connection-tag-or-null ConnectionTagOrNull,

 transition-effect GenericInteger OPTIONAL

}

ConnectionTagOrNull ::= CHOICE

{

 connection-tag GenericInteger,

 null NULL

}

ComparisonValue ::= CHOICE

{

 new-generic-boolean [225] GenericBoolean,

 new-generic-integer [226] GenericInteger,

 new-generic-octetstring [227] GenericOctetString,

 new-generic-object-reference [228] GenericObjectReference,

 new-generic-content-reference [229] GenericContentReference

}

EmulatedEventData ::= CHOICE

{

 new-generic-boolean [225] GenericBoolean,

 new-generic-integer [226] GenericInteger,

 new-generic-octet-string [227] GenericOctetString

}

NewColour ::= CHOICE

{

 new-colour-index [230] GenericInteger,

 new-absolute-colour [231] GenericOctetString

}

NewContent ::= CHOICE

{

 new-included-content GenericOctetString,

 new-referenced-content NewReferencedContent

}

NewFont ::= CHOICE

{

 new-font-name [232] GenericOctetString,

 new-font-reference [233] GenericObjectReference

}

�NewReferencedContent ::= SEQUENCE

{

 generic-content-reference GenericContentReference,

 new-content-size [234] NewContentSize,

 new-content-cache-priority [235] GenericInteger OPTIONAL

}

NewContentSize ::= CHOICE

{

 content-size GenericInteger,

 null NULL

}

NewVariableValue ::= CHOICE

{

 new-generic-integer [226] GenericInteger,

 new-generic-boolean [225] GenericBoolean,

 new-generic-octet-string [227] GenericOctetString,

 new-generic-object-reference [228] GenericObjectReference,

 new-generic-content-reference [229] GenericContentReference

}

Parameter ::= CHOICE

{

 new-generic-boolean [225] GenericBoolean,

 new-generic-integer [226] GenericInteger,

 new-generic-octetstring [227] GenericOctetString,

 new-generic-object-reference [228] GenericObjectReference,

 new-generic-content-reference [229] GenericContentReference

}

Point ::= SEQUENCE

{

 x GenericInteger,

 y GenericInteger

}

Rational ::= SEQUENCE

{

 numerator GenericInteger,

 denominator GenericInteger OPTIONAL

}

-- A.43 Referencing Objects, Contents, Values, Colour and Position ____

ObjectReference ::= CHOICE

{

 external-reference ExternalReference,

 internal-reference INTEGER (1..MAX)

}

ExternalReference ::= SEQUENCE

{

 group-identifier OCTET STRING,

 object-number INTEGER (0..MAX)

}

IndirectReference ::= [236] ObjectReference

ContentReference ::= OCTET STRING

�GenericObjectReference ::= CHOICE

{

 direct-reference ObjectReference,

 indirect-reference IndirectReference

}

GenericContentReference ::= CHOICE

{

 content-reference [69] ContentReference,

 indirect-reference IndirectReference

}

GenericInteger ::= CHOICE

{

 integer INTEGER,

 indirect-reference IndirectReference

}

GenericBoolean ::= CHOICE

{

 boolean BOOLEAN,

 indirect-reference IndirectReference

}

GenericOctetString ::= CHOICE

{

 octetstring OCTET STRING,

 indirect-reference IndirectReference

}

Colour ::= CHOICE

{

 colour-index INTEGER,

 absolute-colour OCTET STRING

}

XYPosition ::= SEQUENCE

{

 x-position INTEGER,

 y-position INTEGER

}

END

�Annex B

Textual notation for MHEG-5 applications

This annex describes the textual notation of MHEG-5 objects conforming to ISO/IEC 13522-5. The alternative representation is the ASN.1 notation defined in Annex A.

B.1	General definitions

B.1.1	Code

The code set to be used by the textual notation shall be ISO/IEC 646 "Information technology – ISO 7-bit coded character set for information interchange". And the textual notation shall use a subset of ISO/IEC 646, which shall be the range of characters from SP (0x20) to ~ (0x7e), HT plus (0x09), LF (0x0a), FF (0x0c) and CR (0x0d).

Other characters shall not be used.

NOTE 1 – Despite the fact that the textual notation limits the character codes to be used, contents of 8-bit data can be encoded by means of QPRINTABLE (see B.3.4), BASE64 (see B.3.5) and external contents referenced by ContentReference.

NOTE 2 – An application domain could extend the character codes to be used in the textual notation as far as it does not violate the grammar. For example, characters from 0x80 to 0xfe might also be allowed for STRING and comments.

B.1.2	Delimiter

HT (0x09), LF (0x0a), FF (0x0c), CR (0x0d) and SP (0x20) are called delimiters.

The grammar described by the textual notation is word-based. A word is either a parenthesis ("(" or ")"), a brace ("{" or "}"), a tag (see B.1.4) or a terminal symbol (see B.3). Any number of delimiters may be inserted between any two adjacent words, without changing the interpretation of words. However, at least one delimiter shall exist between any two terminal symbols and between any tag and any terminal symbol, since they would otherwise be interpreted as a single terminal or a single tag.

B.1.3	Comment

"//" (0x2f 0x2f) which is not within a STRING, QPRINTABLE and BASE64 (see B.3.3, B.3.4 and B.3.5) is used to indicate the start of a comment. All characters between such "//" (including the //) and the next occurrence of a LF (0x0a), FF (0x0c) or CR (0x0d) shall be ignored.

NOTE – HT (0x09) and SP (0x20) do not indicate the end of comments.

B.1.4	Tag

A token starting with":" (0x3a) is called "tag". A tag is preceded by "{" (0x7b) when it is used at the beginning of MHEG-5 objects. A tag is used to distinguish the MHEG-5 objects and their associated attribute values, in general. Tags are case insensitive, e.g. ":Root", ":root", ":ROOT", ":rOOt" and so on are all same. However, in this textual notation, some combination of upper case and lower case in tags are used for easier understanding and more readability.

�B.2	Definitions of symbols

Table B.1 shows the symbols used in the textual notation and their meanings.

Table B.1/T.172 – Definitions of symbols in textual notation

Symbol�Definition��::=�Is defined to be��|�Alternative��<">�Double quote mark (0x22)��"text"�Literals enclosed in double quotes��<text>�Plain text description explaining the codes to be here��*�The preceding syntactic unit may be repeated zero or more times��+�The preceding syntactic unit may be repeated one or more times��[]�The enclosed syntactic unit is optional. It may occur zero or one times��.�End of clause��B.3	Terminal symbols

All the terminal symbols used in the textual notation are defined as follows.

B.3.1	INTEGER

A decimal or positive hexadecimal integer value.

Definition:

INTEGER		::= DECINT | HEXINT | "0".

DECINT		::= ["-"] DIGIT [DIGIT0]*.

DIGIT		::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

DIGIT0		::= DIGIT | "0".

HEXINT		::= HEXPREFIX HEXDIGIT0 [HEXDIGIT0]*.

HEXPREFIX	::= "0x" | "0X".

HEXDIGIT0		::= DIGIT | "0" | "a" | "b" | "c" | "d" | "e" | "f" | "A" | "B" | "C" | "D" | "E" | "F".

B.3.2	BOOLEAN

A Boolean value may be either true or false. The BOOLEAN terminal is case insensitive, i.e. "True", "TRUE" and "true" are one and the same, "False", "FALSE" and "false" are one and the same.

Definition:

BOOLEAN		::= "true" | "false".

B.3.3	STRING

A string value enclosed in the double quotes may contain an arbitrary number of printable characters (from 0x20 to 0x7e). A double quote (0x22) within a STRING shall be encoded as " \" " (0x5c 0x22). And a backslash (0x5c) shall be encoded as "\\" (0x5c 0x5c).

Note that no line breaks are not to be included in STRING, i.e. multi-line text content shall be encoded using QPRINTABLE or BASE64.

�Definition:

STRING			::= <"> STRINGCHAR* <">.

STRINGCHAR		::= <any single printable character except <"> and "\"> | "\"" | "\\".

B.3.4	QPRINTABLE

A string value enclosed in the single quotes shall contain a Quoted-Printable encoded content as defined in RFC 1521. However, " ' " (0x27) shall be encoded as =27. The lower case characters such as "a", "b", "c", "d", "e" and "f" may be used as a general 8-bit representation defined by section 5.1 rule #1 in RFC 1521. The number of characters in a line is not limited. Line breaks need not to be converted to CR (0x0d)/LF (0x0a); however, at least one of LF (0x0a), FF (0x0c) and CR (0x0d) shall be used representing a line break.

Definition:

QPRINTABLE		::= "'" QPRINTABLECHAR* "'".

QPRINTABLECHAR	::= <a character as defined above> | <encoding sequence of a character as defined above>.

B.3.5	BASE64

A string value enclosed in the back quotes shall contain a BASE64 encoded content as defined in RFC 1521. However, the number of characters in a line is not limited in this standard. The encoded BASE64 content may be split into several segments by at least one of LF (0x0a), FF (0x0c) or CR (0x0d). However, these characters shall be ignored, and the input BASE64 encoded segments shall be handled as if they were in one line.

Definition:

BASE64			::= "`" BASE64CHAR* "`".

BASE64CHAR		::= <an encoding sequence of a character as defined above>.

B.3.6	Null

Null represents a special terminal whose semantics depends on the MHEG-5 objects definition. The Null terminal is case insensitive, i.e. "NULL" and "null" are one and the same.

Definition:

Null				::= "NULL".

B.3.7	Enumeration values

A terminal word starting with an alphabet character is called "enumeration value" (all enumeration values are enclosed within two double quotations in the following grammar). An enumeration value is used as one of the terminal symbols which represents a specific semantics depending on its usage. All enumeration values are case insensitive, i.e. "IsAvailable" and "isavailable" are the same.

B.4	MHEG-5 Object Definitions

The textual notation of MHEG-5 objects are defined as follows.

Table B.2 summarises the abbreviations used in tags and made them in reasonable lengths while keeping the readability.

�Table B.2/T.172 – Tag abbreviations

Bordered Bounding Box�BBBox��Content Cache Priority�CCPriority��Content Hook�Chook��Coordinate System�CS��Generic�G��Group Cache Priority�GCPriority��Horizontal Justification�HJustification��Identifier�ID��Information�Info��Interchanged�Interchg��OctetString�OString��Original�Orig��Program�Prg��Reference�Ref��Register�Reg��Standard�Std��Variable�Var (except for elementary action tags)��Vertical Justification�VJustification��B.4.1	Root Class

Root		::= ObjectIdentifier.

ObjectIdentifier	::= ObjectReference.

B.4.2	Group Class

Group	::= Root [StandardIdentifier]

		[StandardVersion] [ObjectInformation]

		[OnStartUp] [OnCloseDown]

		[OriginalGroupCachePriority] [Items].

StandardIdentifier		::= ":StdID" JointIsoItuIdentifier

		MHEGStandardIdentifier.

JointIsoItuIdentifier	::= INTEGER.

MHEGStandardIdentifier		::= INTEGER.

StandardVersion		::= ":StdVersion" INTEGER.

ObjectInformation		::= ":ObjectInfo" OctetString.

OnStartUp		::= ":OnStartUp" ActionClass.

OnCloseDown		::= ":OnCloseDown" ActionClass.

OriginalGroupCachePriority		::= ":OrigGCPriority" INTEGER.

Items		::= ":Items" "(" GroupItem+ ")".

GroupItem		::= ResidentProgramClass |

		RemoteProgramClass |

		InterchangedProgramClass |

		PaletteClass |

		FontClass |

		CursorShapeClass |

		BooleanVariableClass |

		IntegerVariableClass |

		OctetStringVariableClass |

		ObjectRefVariableClass |

		ContentRefVariableClass |

�		LinkClass |

		StreamClass |

		BitmapClass |

		LineArtClass |

		DynamicLineArtClass |

		RectangleClass |

		HotspotClass |

		SwitchButtonClass |

		PushButtonClass |

		TextClass |

		EntryFieldClass |

		HyperTextClass |

		SliderClass |

		TokenGroupClass |

		ListGroupClass.

B.4.3	Application Class

ApplicationClass	::= "{:Application" Group

		[OnSpawnCloseDown] [OnRestart]

		[DefaultAttributes] "}".

OnSpawnCloseDown	::= ":OnSpawnCloseDown" ActionClass.

OnRestart	::= ":OnRestart" ActionClass.

DefaultAttributes	::= DefaultAttribute+.

DefaultAttribute	::= CharacterSet | BackgroundColour

		| TextContentHook

		| TextColour | Font

		| FontAttributes

		| InterchangedProgramContentHook

		| StreamContentHook

		| BitmapContentHook

		| LineArtContentHook | ButtonRefColour

		| HighlightRefColour | SliderRefColour.

CharacterSet	::= ":CharacterSet" INTEGER.

BackgroundColour		::= ":BackgroundColour" Colour.

TextContentHook			::= ":TextCHook" INTEGER.

TextColour		::= ":TextColour" Colour.

Font		::= ":Font" FontBody.

FontBody	::= DirectFont | IndirectFont.

DirectFont		::= OctetString.

IndirectFont		::= ObjectReference.

FontAttributes		::= ":FontAttributes" OctetString.

InterchangedProgramContentHook	::= ":InterchgPrgCHook" INTEGER.

StreamContentHook	::= ":StreamCHook" INTEGER.

BitmapContentHook	::= ":BitmapCHook" INTEGER.

LineArtContentHook		::= ":LineArtCHook" INTEGER.

ButtonRefColour		::= ":ButtonRefColour" Colour.

HighlightRefColour	::= ":HighlightRefColour" Colour.

SliderRefColour		::= ":SliderRefColour" Colour.

B.4.4	Scene Class

SceneClass		::= "{:Scene" Group InputEventRegister

		SceneCoordinateSystem [AspectRatio]

		[MovingCursor] [NextScenes] "}".

InputEventRegister		::= ":InputEventReg" INTEGER.

SceneCoordinateSystem		::= ":SceneCS" XScene YScene.

XScene		::= INTEGER.

YScene		::= INTEGER.

AspectRatio		::= ":AspectRatio" Width Height.

Width		::= INTEGER.

�Height	::= INTEGER.

MovingCursor		::= ":MovingCursor" BOOLEAN.

NextScenes		::= ":NextScenes" "(" NextScene+ ")".

NextScene		::= "(" SceneRef SceneWeight ")".

SceneRef	::= OctetString.

SceneWeight		::= INTEGER.

B.4.5	Ingredient Class

Ingredient	::= Root [InitiallyActive] [ContentHook]

		[OriginalContent] [Shared].

InitiallyActive		::= ":InitiallyActive" BOOLEAN.

ContentHook	::= ":CHook" INTEGER.

OriginalContent		::= ":OrigContent" ContentBody.

ContentBody	::= IncludedContent | ReferencedContent.

IncludedContent		::= OctetString.

ReferencedContent		::= ":ContentRef" "(" ContentReference

		[ContentSize] [ContentCachePriority]

		")".

ContentSize		::= ":ContentSize" INTEGER.

ContentCachePriority		::= ":CCPriority" INTEGER.

Shared		::= ":Shared" BOOLEAN.

B.4.6	Link Class

LinkClass	::= "{:Link" Ingredient LinkCondition

		LinkEffect "}".

LinkCondition		::= EventSource EventType [EventData].

EventSource		::= ":EventSource" ObjectReference.

EventType		::= ":EventType" EventTypeEnum.

EventTypeEnum		::= "IsAvailable" | "ContentAvailable"

		| "IsDeleted" | "IsRunning"

		| "IsStopped" | "UserInput"

		| "AnchorFired" | "TimerFired"

		| "AsynchStopped" | "InteractionCompleted"

		| "TokenMovedFrom" | "TokenMovedTo"

		| "StreamEvent" | "StreamPlaying"

		| "StreamStopped" | "CounterTrigger"

		| "HighlightOn" | "HighlightOff"

		| "CursorEnter" | "CursorLeave"

		| "IsSelected" | "IsDeselected"

		| "TestEvent" | "FirstItemPresented"

		| "LastItemPresented" | "HeadItems"

		| "TailItems" | "ItemSelected"

		| "ItemDeselected" | "EntryFieldFull"

					| "EngineEvent".

EventData		::= ":EventData" EventDataBody.

EventDataBody		::= OctetString | BOOLEAN | INTEGER.

LinkEffect		::= ":LinkEffect" ActionClass.

B.4.7	Program Class

Program		::= Ingredient Name [InitiallyAvailable].

Name		::= ":Name" OctetString.

InitiallyAvailable	::= ":InitiallyAvailable" BOOLEAN.

B.4.8	ResidentProgram Class

ResidentProgramClass	::= "{:ResidentPrg" Program "}".

�B.4.9	RemoteProgram Class

RemoteProgramClass	::= "{:RemotePrg" Program

		[ProgramConnectionTag] "}".

ProgramConnectionTag	::= ":ConnectionTag" INTEGER.

B.4.10	InterchangedProgram Class

InterchangedProgramClass	::= "{:InterchgPrg" Program "}".

B.4.11	Palette Class

PaletteClass		::= "{:Palette" Ingredient "}".

B.4.12	Font Class

FontClass	::= "{:Font" Ingredient "}".

B.4.13	CursorShape Class

CursorShapeClass	::= "{:CursorShape" Ingredient "}".

B.4.14	Variable Class

Variable	::= Ingredient OriginalValue.

OriginalValue	::= ":OrigValue" OriginalValueBody.

OriginalValueBody		::= BOOLEAN | INTEGER | OctetString

		| ObjectReferenceValue

		| ContentReferenceValue.

ObjectReferenceValue	::= ":ObjectRef" ObjectReference.

ContentReferenceValue	::= ":ContentRef" ContentReference.

B.4.15	BooleanVariable Class

BooleanVariableClass	::= "{:BooleanVar" Variable "}".

B.4.16	IntegerVariable Class

IntegerVariableClass	::= "{:IntegerVar" Variable "}".

B.4.17	OctetStringVariable Class

OctetStringVariableClass		::= "{:OStringVar" Variable "}".

B.4.18	ObjectRefVariable Class

ObjectRefVariableClass	::= "{:ObjectRefVar" Variable "}".

B.4.19	ContentRefVariable Class

ContentRefVariableClass		::= "{:ContentRefVar" Variable "}".

B.4.20	Presentable Class

Presentable		::= Ingredient.

�B.4.21	TokenManager Class

TokenManager		::= [MovementTable].

MovementTable		::= ":MovementTable" "(" Movement+ ")".

Movement		::= "(" TargetElement+ ")".

TargetElement		::= INTEGER.

B.4.22	TokenGroup Class

TokenGroupClass		::= "{:TokenGroup" TokenGroupBody "}".

TokenGroupBody		::= Presentable TokenManager TokenGroupItems

		[NoTokenActionSlots].

TokenGroupItems		::= ":TokenGroupItems" "(" TokenGroupItem+ ")".

TokenGroupItem		::= "(" AVisible [ActionSlots] ")".

AVisible	::= ObjectReference.

ActionSlots		::= ":ActionSlots" "(" ActionSlot+ ")".

ActionSlot		::= ActionClass | Null.

NoTokenActionSlots		::= ":NoTokenActionSlots" "(" ActionSlot+ ")".

B.4.23	ListGroup Class

ListGroupClass		::= "{:ListGroup" TokenGroupBody

		Positions [WrapAround]

		[MultipleSelection] "}".

Positions	::= ":Positions" "(" Position+ ")".

Position	::= "(" XYPosition ")".

WrapAround	::= ":WrapAround" BOOLEAN.

MultipleSelection		::= ":MultipleSelection" BOOLEAN.

B.4.24	Visible Class

Visible	::= Presentable OriginalBoxSize

	[OriginalPosition] [OriginalPaletteRef].

OriginalBoxSize	::= ":OrigBoxSize" BoxSize.

BoxSize	::= XLength YLength.

XLength	::= INTEGER.

YLength	::= INTEGER.

OriginalPosition	::= ":OrigPosition" XYPosition.

OriginalPaletteRef		::= ":OrigPaletteRef" ObjectReference.

B.4.25	Bitmap Class

BitmapClass		::= "{:Bitmap" Visible [Tiling]

		[OriginalTransparency] "}".

Tiling		::= ":Tiling" BOOLEAN.

OriginalTransparency	::= ":OrigTransparency" INTEGER.

B.4.26	LineArt Class

LineArtClass	::= "{:LineArt" LineArtBody "}".

LineArtBody	::= Visible [BorderedBoundingBox]

		[OriginalLineWidth]

		[OriginalLineStyle]

		[OriginalRefLineColour]

		[OriginalRefFillColour] "}".

BorderedBoundingBox	::= ":BBBox" BOOLEAN.

OriginalLineWidth	::= ":OrigLineWidth" INTEGER.

OriginalLineStyle	::= ":OrigLineStyle" INTEGER.

OriginalRefLineColour	::= ":OrigRefLineColour" Colour.

OriginalRefFillColour	::= ":OrigRefFillColour" Colour.

�B.4.27	Rectangle Class

RectangleClass	::= "{:Rectangle" LineArtBody "}".

B.4.28	DynamicLineArt Class

DynamicLineArtClass	::= "{:DynamicLineArt" LineArtBody "}".

B.4.29	Text Class

TextClass	::= "{:Text" TextBody "}".

TextBody	::= Visible [OriginalFont] [FontAttributes]

		[TextColour] [BackgroundColour]

		[CharacterSet]

		[HorizontalJustification]

		[VerticalJustification]

		[LineOrientation] [StartCorner]

		[TextWrapping].

OriginalFont	::= ":OrigFont" FontBody.

HorizontalJustification		::= ":HJustification" JustificationEnum.

JustificationEnum		::= "start" | "end" | "centre" | "justified".

VerticalJustification	::= ":VJustification" JustificationEnum.

LineOrientation		::= ":LineOrientation" LineOrientationEnum.

LineOrientationEnum		::= "vertical" | "horizontal".

StartCorner		::= ":StartCorner" StartCornerEnum.

StartCornerEnum			::= "upper-left" | "upper-right"

		| "lower-left" | "lower-right".

TextWrapping			::= ":TextWrapping" BOOLEAN.

B.4.30	Stream Class

StreamClass		::= "{:Stream" Presentable Multiplex

		[Storage] [Looping] "}".

Multiplex	::= ":Multiplex" "(" StreamComponent+ ")".

StreamComponent		::= AudioClass | VideoClass | RTGraphicsClass.

Storage		::= ":Storage" StorageEnum.

StorageEnum	::= "memory" | "stream".

Looping		::= ":Looping" INTEGER.

B.4.31	Audio Class

AudioClass		::= "{:Audio" Presentable ComponentTag

		[OriginalVolume] "}".

ComponentTag		::= ":ComponentTag" INTEGER.

OriginalVolume		::= ":OrigVolume" INTEGER.

B.4.32	Video Class

VideoClass		::= "{:Video" Visible ComponentTag

		[Termination].

Termination		::= ":Termination" TerminationEnum.

TerminationEnum			::= "freeze" | "disappear".

B.4.33	RTGraphics Class

RTGraphicsClass			::= "{:RTGraphics" Visible ComponentTag

		[Termination] "}".

�B.4.34	Interactible Class

Interactible			::= [EngineResp] [HighlightRefColour].

EngineResp			::= ":EngineResp" BOOLEAN.

B.4.35	Slider Class

SliderClass			::= "{:Slider" Visible Interactible

		Orientation MaxValue [MinValue]

		[InitialValue] [InitialPortion]

		[StepSize] [SliderStyle]

		[SliderRefColour] "}".

Orientation		::= ":Orientation" OrientationEnum.

OrientationEnum		::= "left" | "right" | "up" | "down".

MaxValue		::= ":MaxValue" INTEGER.

MinValue	::= ":MinValue" INTEGER.

InitialValue		::= ":InitialValue" INTEGER.

InitialPortion	::= ":InitialPortion" INTEGER.

StepSize	::= ":StepSize" INTEGER.

SliderStyle		::= ":SliderStyle" SliderStyleEnum.

SliderStyleEnum		::= "normal" | "thermometer" | "proportional".

B.4.36	EntryField Class

EntryFieldClass		::= "{:EntryField" TextBody Interactible

		[InputType] [CharList]

		[ObscuredInput] [MaxLength] "}".

InputType	::= ":InputType" InputTypeEnum.

InputTypeEnum	::= "alpha" | "numeric" | "any" | "listed".

CharList	::= ":CharList" OctetString.

ObscuredInput	::= ":ObscuredInput" BOOLEAN.

MaxLength	::= ":MaxLength" INTEGER.

B.4.37	HyperText Class

HyperTextClass	::= "{:HyperText" TextBody Interactible

		"}".

B.4.38	Button Class

Button	::= Visible Interactible [ButtonRefColour].

B.4.39	Hotspot Class

HotspotClass	::= "{:Hotspot" Button "}".

B.4.40	PushButton Class

PushButtonClass	::= "{:PushButton" PushButtonBody "}".

PushButtonBody	::= Button [OriginalLabel] [CharacterSet].

OriginalLabel		::= ":OrigLabel" OctetString.

B.4.41	SwitchButton Class

SwitchButtonClass	::= "{:SwitchButton" PushButtonBody

		ButtonStyle "}".

ButtonStyle	::= ":ButtonStyle" ButtonStyleEnum.

ButtonStyleEnum		::= "pushbutton" | "radiobutton" | "checkbox".

�B.4.42	Action Class

ActionClass	::= "(" ElementaryAction+ ")".

ElementaryAction	::= Activate

		| Add

		| AddItem

		| Append

		| BringToFront

		| Call

		| CallActionSlot

		| Clear

		| Clone

		| CloseConnection

		| Deactivate

		| DelItem

		| Deselect

		| DeselectItem

		| Divide

		| DrawArc

		| DrawLine

		| DrawOval

		| DrawPolygon

		| DrawPolyline

		| DrawRectangle

		| DrawSector

		| Fork

		| GetAvailabilityStatus

		| GetBoxSize

		| GetCellItem

		| GetCursorPosition

		| GetEngineSupport

		| GetEntryPoint

		| GetFillColour

		| GetFirstItem

		| GetHighlightStatus

		| GetInteractionStatus

		| GetItemStatus

		| GetLabel

		| GetLastAnchorFired

		| GetLineColour

		| GetLineStyle

		| GetLineWidth

		| GetListItem

		| GetListSize

		| GetOverwriteMode

		| GetPortion

		| GetPosition

		| GetRunningStatus

		| GetSelectionStatus

		| GetSliderValue

		| GetTextContent

		| GetTextData

		| GetTokenPosition

		| GetVolume

		| Launch

		| LockScreen

		| Modulo

		| Move

		| MoveTo

		| Multiply

�		| OpenConnection

		| Preload

		| PutBefore

		| PutBehind

		| Quit

		| ReadPersistent

		| Run

		| ScaleBitmap

		| ScaleVideo

		| ScrollItems

		| Select

		| SelectItem

		| SendEvent

		| SendToBack

		| SetBoxSize

		| SetCachePriority

		| SetCounterEndPosition

		| SetCounterPosition

		| SetCounterTrigger

		| SetCursorPosition

		| SetCursorShape

		| SetData

		| SetEntryPoint

		| SetFillColour

		| SetFirstItem

		| SetFontRef

		| SetHighlightStatus

		| SetInteractionStatus

		| SetLabel

		| SetLineColour

		| SetLineStyle

		| SetLineWidth

		| SetOverwriteMode

		| SetPaletteRef

		| SetPortion

		| SetPosition

		| SetSliderValue

		| SetSpeed

		| SetTimer

		| SetTransparency

		| SetVariable

		| SetVolume

		| Spawn

		| Step

		| Stop

		| StorePersistent

		| Subtract

		| TestVariable

		| Toggle

		| ToggleItem

		| TransitionTo

		| Unload

		| UnlockScreen.

Activate	::= ":Activate" "(" Target ")".

Add		::= ":Add" "(" Target Value ")".

AddItem		::= ":AddItem" "(" Target ItemIndex

		VisibleReference ")".

Append		::= ":Append" "(" Target AppendValue ")".

BringToFront		::= ":BringToFront" "(" Target ")".

�Call		::= ":Call" "(" Target CallSucceeded

		[Parameters] ")".

CallActionSlot	::= ":CallActionSlot" "(" Target Index ")".

Clear		::= ":Clear" "(" Target ")".

Clone		::= ":Clone" "(" Target CloneRefVar ")".

CloseConnection	::= ":CloseConnection" "(" Target

		ConnectionTag ")".

Deactivate		::= ":Deactivate" "(" Target ")".

DelItem		::= ":DelItem" "(" Target VisibleReference

		")".

Deselect	::= ":Deselect" "(" Target ")".

DeselectItem		::= ":DeselectItem" "(" Target ItemIndex ")".

Divide		::= ":Divide" "(" Target Value ")".

DrawArc		::= ":DrawArc" "(" Target X Y EllipseWidth

		EllipseHeight StartAngle ArcAngle ")".

DrawLine	::= ":DrawLine" "(" Target X1 Y1 X2 Y2 ")".

DrawOval	::= ":DrawOval" "(" Target X Y EllipseWidth

		EllipseHeight ")".

DrawPolygon	::= ":DrawPolygon" "(" Target PointList ")".

DrawPolyline	::= ":DrawPolyline" "(" Target PointList ")".

DrawRectangle		::= ":DrawRectangle" "(" Target X1 Y1 X2 Y2

		")".

DrawSector		::= ":DrawSector" "(" Target X Y EllipseWidth

		EllipseHeight StartAngle ArcAngle ")".

Fork		::= ":Fork" "(" Target ForkSucceeded

		[Parameters] ")".

GetAvailabilityStatus	::= ":GetAvailabilityStatus" "(" Target

		AvailabilityStatusVar ")".

GetBoxSize		::= ":GetBoxSize" "(" Target XBoxSizeVar

		YBoxSizeVar ")".

GetCellItem		::= ":GetCellItem" "(" Target CellIndex

		ItemRefVar ")".

GetCursorPosition		::= ":GetCursorPosition" "(" Target XOut YOut

		")".

GetEngineSupport		::= ":GetEngineSupport" "(" Target Feature

		Answer ")".

GetEntryPoint		::= ":GetEntryPoint" "(" Target EntryPointVar

		")".

GetFillColour		::= ":GetFillColour" "(" Target FillColourVar

		")".

GetFirstItem		::= ":GetFirstItem" "(" Target FirstItemVar

		")".

GetHighlightStatus		::= ":GetHighlightStatus" "(" Target

		HighlightStatusVar ")".

GetInteractionStatus	::= ":GetInteractionStatus" "(" Target

		InteractionStatusVar ")".

GetItemStatus		::= ":GetItemStatus" "(" Target

		ItemIndex ItemStatusVar ")".

GetLabel	::= ":GetLabel" "(" Target LabelVar ")".

GetLastAnchorFired	::= ":GetLastAnchorFired" "(" Target

		LastAnchorFiredVar ")".

GetLineColour		::= ":GetLineColour" "(" Target LineColourVar

		")".

GetLineStyle		::= ":GetLineStyle" "(" Target LineStyleVar

		")".

GetLineWidth		::= ":GetLineWidth" "(" Target LineWidthVar

		")".

GetListItem		::= ":GetListItem" "(" Target ItemIndex

		ItemRefVar ")".

GetListSize		::= ":GetListSize" "(" Target SizeVar ")".

�GetOverwriteMode		::= ":GetOverwriteMode" "(" Target

		OverwriteModeVar ")".

GetPortion		::= ":GetPortion" "(" Target PortionVar ")".

GetPosition		::= ":GetPosition" "(" Target XPositionVar

		YPositionVar ")".

GetRunningStatus		::= ":GetRunningStatus" "(" Target

		RunningStatusVar ")".

GetSelectionStatus		::= ":GetSelectionStatus" "(" Target

		SelectionStatusVar ")".

GetSliderValue		::= ":GetSliderValue" "(" Target

		SliderValueVar ")".

GetTextContent		::= ":GetTextContent" "(" Target

		TextContentVar ")".

GetTextData			::= ":GetTextData" "(" Target TextDataVar ")".

GetTokenPosition			::= ":GetTokenPosition" "(" Target

		TokenPositionVar ")".

GetVolume			::= ":GetVolume" "(" Target VolumeVar ")".

Launch			::= ":Launch" "(" Target ")".

LockScreen			::= ":LockScreen" "(" Target ")".

Modulo			::= ":Modulo" "(" Target Value ")".

Move		::= ":Move" "(" Target MovementIdentifier ")".

MoveTo			::= ":MoveTo" "(" Target Index ")".

Multiply	::= ":Multiply" "(" Target Value ")".

OpenConnection		::= ":OpenConnection" "(" Target OpenSucceeded

		Protocol Address ConnectionTag ")".

Preload		::= ":Preload" "(" Target ")".

PutBefore	::= ":PutBefore" "(" Target ReferenceVisible

		")".

PutBehind		::= ":PutBehind" "(" Target ReferenceVisible

		")".

Quit		::= ":Quit" "(" Target ")".

ReadPersistent		::= ":ReadPersistent" "(" Target ReadSucceeded

		OutVariables InFileName ")".

Run		::= ":Run" "(" Target ")".

ScaleBitmap		::= ":ScaleBitmap" "(" Target XScale YScale

		")".

ScaleVideo		::= ":ScaleVideo" "(" Target XScale YScale ")".

ScrollItems		::= ":ScrollItems" "(" Target ItemsToScroll ")".

Select		::= ":Select" "(" Target ")".

SelectItem		::= ":SelectItem" "(" Target ItemIndex ")".

SendEvent		::= ":SendEvent" "(" Target EmulatedEventSource

		EmulatedEventType [EmulatedEventData]

		")".

SendToBack		::= ":SendToBack" "(" Target ")".

SetBoxSize		::= ":SetBoxSize" "(" Target XNewBoxSize

		YNewBoxSize ")" .

SetCachePriority	::= ":SetCachePriority" "(" Target

		NewCachePriority ")".

SetCounterEndPosition		::= ":SetCounterEndPosition" "(" Target

		NewCounterEndPosition ")".

SetCounterPosition		::= ":SetCounterPosition" "(" Target

		NewCounterPosition ")".

SetCounterTrigger		::= ":SetCounterTrigger" "(" Target

		TriggerIdentifier [NewCounterValue]

		")".

SetCursorPosition		::= ":SetCursorPosition" "(" Target XCursor

		YCursor ")".

SetCursorShape		::= ":SetCursorShape" "(" Target

		[NewCursorShape] ")".

SetData		::= ":SetData" "(" Target NewContent ")".

�SetEntryPoint		::= ":SetEntryPoint" "(" Target NewEntryPoint

		")".

SetFillColour	::= ":SetFillColour" "(" Target [NewColour]

		")".

SetFirstItem		::= ":SetFirstItem" "(" Target NewFirstItem

		")".

SetFontRef		::= ":SetFontRef" "(" Target NewFont ")".

SetHighlightStatus		::= ":SetHighlightStatus" "(" Target

		NewHighlightStatus ")".

SetInteractionStatus	::= ":SetInteractionStatus" "(" Target

		NewInteractionStatus ")".

SetLabel	::= ":SetLabel" "(" Target NewLabel ")".

SetLineColour		::= ":SetLineColour" "(" Target NewColour ")".

SetLineStyle		::= ":SetLineStyle" "(" Target NewLineStyle

		")".

SetLineWidth		::= ":SetLineWidth" "(" Target NewLineWidth

		")".

SetOverwriteMode		::= ":SetOverwriteMode" "(" Target

		NewOverwriteMode ")".

SetPaletteRef	::= ":SetPaletteRef" "(" Target NewPaletteRef

		")".

SetPortion		::= ":SetPortion" "(" Target NewPortion ")".

SetPosition		::= ":SetPosition" "(" Target NewXPosition

		NewYPosition ")".

SetSliderValue		::= ":SetSliderValue" "(" Target

		NewSliderValue ")".

SetSpeed	::= ":SetSpeed" "(" Target NewSpeed ")".

SetTimer	::= ":SetTimer" "(" Target TimerID

		[TimerValue] [AbsoluteTime] ")".

SetTransparency		::= ":SetTransparency" "(" Target

		NewTransparency ")".

SetVariable		::= ":SetVariable" "(" Target

		NewVariableValue ")".

SetVolume		::= ":SetVolume" "(" Target NewVolume ")".

Spawn	::= ":Spawn" "(" Target ")".

Stop		::= ":Stop" "(" Target ")".

Step		::= ":Step" "(" Target NbOfSteps ")".

StorePersistent		::= ":StorePersistent" "(" Target

		StoreSucceeded InVariables OutFileName

		")".

Subtract	::= ":Subtract" "(" Target Value ")".

TestVariable		::= ":TestVariable" "(" Target Operator

		ComparisonValue ")".

Toggle		::= ":Toggle" "(" Target ")".

ToggleItem		::= ":ToggleItem" "(" Target ItemIndex ")".

TransitionTo	::= ":TransitionTo" "(" Target [ConnectionTag]

		[TransitionEffect] ")".

Unload		::= ":Unload" "(" Target ")".

UnlockScreen		::= ":UnlockScreen" "(" Target ")".

AbsoluteTime	::= ":AbsoluteTime" GenericBoolean.

Address		::= GenericOctetString.

Answer		::= ObjectReference.

AppendValue	::= GenericOctetString.

ArcAngle	::= GenericInteger.

AvailabilityStatusVar		::= ObjectReference.

CallSucceeded		::= ObjectReference.

CellIndex	::= GenericInteger.

CloneRefVar	::= ObjectReference.

�ComparisonValue			::= NewGenericBoolean | NewGenericInteger

		| NewGenericOctetString

		| NewGenericObjectReference

		| NewGenericContentReference.

ConnectionTag		::= ":ConnectionTag" GenericInteger.

Denominator	::= GenericInteger.

EllipseHeight	::= GenericInteger.

EllipseWidth		::= GenericInteger.

EmulatedEventData	::= NewGenericBoolean | NewGenericInteger

		| NewGenericOctetString.

EmulatedEventSource		::= GenericObjectReference .

EmulatedEventType	::= EventTypeEnum.

EntryPointVar		::= ObjectReference.

ForkSucceeded		::= ObjectReference.

Feature		::= GenericOctetString.

FillColourVar		::= ObjectReference.

FirstItemVar	::= ObjectReference.

HighlightStatusVar		::= ObjectReference.

Index		::= GenericInteger.

InFileName		::= GenericOctetString.

InteractionStatusVar	::= ObjectReference.

InVariables		::= "(" ObjectReference+ ")".

ItemIndex	::= GenericInteger.

ItemRefVar		::= ObjectReference.

ItemStatusVar		::= ObjectReference.

ItemsToScroll		::= GenericInteger.

LabelVar		::= ObjectReference.

LastAnchorFiredVar	::= ObjectReference.

LineColourVar		::= ObjectReference.

LineStyleVar	::= ObjectReference.

LineWidthVar		::= ObjectReference.

MovementIdentifier	::= GenericInteger.

NbOfSteps		::= GenericInteger.

NewAbsoluteColour	::= ":NewAbsoluteColour" GenericOctetString.

NewCachePriority		::= GenericInteger.

NewColour		::= NewColourIndex | NewAbsoluteColour.

NewColourIndex		::= ":NewColourIndex" GenericInteger.

NewContent		::= NewIncludedContent | NewReferencedContent.

NewContentCachePriority		::= ":NewCCPriority" GenericInteger.

NewCounterEndPosition			::= GenericInteger.

NewCounterPosition	::= GenericInteger.

NewContentSize		::= ":NewContentSize" GenericInteger.

NewCounterValue			::= GenericInteger.

NewCursorShape			::= GenericObjectReference.

NewEntryPoint		::= GenericInteger.

NewFirstItem	::= GenericInteger.

NewFont		::= NewFontName | NewFontReference.

NewFontName		::= NewGenericOctetString.

NewFontReference		::= NewGenericObjectReference.

NewGenericBoolean	::= ":GBoolean" GenericBoolean.

NewGenericInteger		::= ":GInteger" GenericInteger.

NewGenericOctetString		::= ":GOctetString" GenericOctetString.

NewGenericObjectReference		::= ":GObjectRef" GenericObjectReference.

NewGenericContentReference		::= ":GContentRef" GenericContentReference.

NewHighlightStatus	::= GenericBoolean.

NewIncludedContent		::= GenericOctetString.

NewInteractionStatus		::= GenericBoolean.

NewLabel		::= GenericOctetString.

NewLineStyle		::= GenericInteger.

NewLineWidth		::= GenericInteger.

NewOverwriteMode	::= GenericBoolean.

�NewPaletteRef		::= GenericObjectReference.

NewPortion		::= GenericInteger.

NewReferencedContent		::= ":NewRefContent" "(" GenericContentReference

		[NewContentSize]

		[NewContentCachePriority] ")".

NewSliderValue		::= GenericInteger.

NewSpeed		::= Rational.

NewTransparency			::= GenericInteger.

NewVariableValue		::= NewGenericInteger | NewGenericBoolean

		| NewGenericOctetString

		| NewGenericObjectReference

		| NewGenericContentReference.

NewVolume		::= GenericInteger.

NewXPosition		::= GenericInteger.

NewYPosition		::= GenericInteger.

Numerator		::= GenericInteger.

OpenSucceeded		::= ObjectReference.

Operator	::= GenericInteger.

OutFileName	::= GenericOctetString.

OutVariables	::= "(" ObjectReference+ ")".

OverwriteModeVar	::= ObjectReference.

Parameter	::= NewGenericBoolean | NewGenericInteger

		| NewGenericOctetString

		| NewGenericObjectReference

		| NewGenericContentReference.

Parameters		::= Parameter+.

Point		::= "(" X Y ")".

PointList	::= "(" Point+ ")".

PortionVar		::= ObjectReference.

Protocol	::= GenericOctetString.

Rational	::= Numerator [Denominator].

ReadSucceeded		::= ObjectReference.

ReferenceVisible	::= GenericObjectReference.

RunningStatusVar		::= ObjectReference.

SelectionStatusVar		::= ObjectReference.

SizeVar		::= ObjectReference.

SliderValueVar		::= ObjectReference.

StartAngle		::= GenericInteger.

StoreSucceeded		::= ObjectReference.

Target	::= GenericObjectReference.

TextContentVar		::= ObjectReference.

TextDataVar	::= ObjectReference.

TimerID		::= GenericInteger.

TimerValue		::= GenericInteger.

TokenPositionVar		::= ObjectReference.

TransitionEffect	::= GenericInteger.

TriggerIdentifier	::= GenericInteger.

Value		::= GenericInteger.

VisibleReference	::= GenericObjectReference.

VolumeVar		::= ObjectReference.

X	::= GenericInteger.

X1	::= GenericInteger.

X2	::= GenericInteger.

XBoxSizeVar	::= ObjectReference.

XCursor		::= GenericInteger.

XNewBoxSize		::= GenericInteger.

XOut		::= ObjectReference.

XPositionVar	::= ObjectReference.

XScale		::= GenericInteger.

�Y	::= GenericInteger.

Y1	::= GenericInteger.

Y2	::= GenericInteger.

YBoxSizeVar	::= ObjectReference.

YCursor		::= GenericInteger.

YNewBoxSize		::= GenericInteger.

YOut		::= ObjectReference.

YPositionVar	::= ObjectReference.

YScale		::= GenericInteger.

B.4.43	Referencing Objects, Contents, Values, Colour and Position

ObjectReference		::= ExternalReference | InternalReference.

ExternalReference		::= "(" GroupIdentifier ObjectNumber ")".

InternalReference		::= ObjectNumber.

GroupIdentifier		::= OctetString.

ObjectNumber		::= INTEGER.

ContentReference		::= OctetString.

GenericObjectReference		::= DirectReference | IndirectReference.

DirectReference		::= ObjectReference.

IndirectReference		::= ":IndirectRef" ObjectReference.

GenericContentReference		::= ContentReference | IndirectReference.

GenericInteger		::= INTEGER | IndirectReference.

GenericBoolean		::= BOOLEAN | IndirectReference.

GenericOctetString		::= OctetString | IndirectReference.

OctetString		::= STRING | QPRINTABLE | BASE64.

Colour	::= ColourIndex | AbsoluteColour.

ColourIndex		::= INTEGER.

AbsoluteColour		::= OctetString.

XYPosition			::= XPosition YPosition.

XPosition		::= INTEGER.

YPosition		::= INTEGER.

Appendix i

Bootstrap of an MHEG-5 engine

An MHEG-5 engine may be in two main states: idle or active. An idle MHEG-5 engine is one in which no Application object is active. Conversely, in an active MHEG-5 engine, exactly one Application object is active. The engine goes from an active to an idle state only by an execution of the Quit action; the semantics of this are explained in clause 10. The engine goes from an idle to an active state either

1)	as a step in the execution of a Launch or a Spawn action; the semantics of this are explained in clause 10; or

2)	as a result of the idle MHEG-5 engine being forced from the outside to activate an Application object.

�The latter case is the topic of this subclause.

From the outside, an MHEG-5 engine is typically an application that runs on some device in a software environment. When this application is first activated, it shall get information from the outside where the first Application object is to be found. This information may come, for instance, from the user, from memory, or from the network, and should make it possible for the MHEG-5 engine to attach to the name space of the Application object, and to find the Application object itself.

Once the MHEG-5 engine has the information, it attempts to retrieve that Application object and to activate it. The latter is done by implicitly invoking the Activation behaviour of the object. In order to also activate a Scene (without which no user input or display is possible), the Application object should have a TransitionTo action encoded in its OnStartUp object; this action then activates the first Scene of the Application.

appendix ii

Definition of application domains

This appendix specifies the features of this Recommendation that need to be defined by a specific MHEG-5 application domain. The goal of this appendix is to provide a set of tools for creating an instance of an MHEG-5 engine and examples of table values.

II.1	Object interchange format

As an example, one specifies here that the application domain chooses the ASN.1 notation defined in Annex A for interchange format.

	Interchange format: ASN.1.

II.2	Set of classes

The application domain defines a set of mandatory classes such as the following.

	Action, Application, Audio, Bitmap, BooleanVariable, ContentRefVariable, EntryField, HotSpot, HyperText, IntegerVariable, InterchangedProgram, Link, ListGroup, ObjectRefVariable, OctetStringVariable, PushButton, Rectangle, RemoteProgram, ResidentProgram, Scene, Slider, Stream, SwitchButton, Text, TokenGroup, Video.

II.3	Set of features

The application domain defines a set of mandatory and optional features such as the following example.

Feature�Requirement��Ancillary connections�Mandatory��Caching�Optional��Cloning�Mandatory��Free moving cursor�Optional��Scaling (Video and Bitmap)�Optional��Stacking of Applications�Optional��Trick modes�Optional���II.4	Content data encoding

This Recommendation is generic in the sense that it does not specify exactly how the content data (e.g. bitmap data) is encoded. However, this Recommendation is also specific in the sense that:

1)	it specifies which type of content data is supported; and

2)	it provides a method for defining – for a specific application domain – a list of the actual encoding used in that domain.

The following table exemplifies how an application domain could specify the formats needed; the values listed below are purely provided as an example of values an application domain could choose.

Content table

Attribute�Permissible values��FontAttributes �Bold, italic, emphasis, strong emphasis��FontName�(None specified)��AbsoluteColour�RGB16, that is, coding of graphics in 16 bits per pixel, allocating 5 bits to the Red and Blue components and 6 bits to the Green component��CharacterSet�1 – Referring to the subset of ISO/IEC 8859-1 as specified in HTML 2.0��TransitionEffect�(None specified)��

Encoding table

Type of content�Specification�(Data types)�Hook values��Font encoding format�(None specified)���Palette encoding format�(None specified)���Bitmap encoding format�2D graphics defined in DAVIC 1.0

MPEG-2 Video I-frames (ISO/IEC 13818-2)�1

2��Text encoding format�The subset of ISO/IEC 8859-1 as specified in HTML 2.0�1��EntryField encoding format�The subset of ISO/IEC 8859-1 as specified in HTML 2.0�1��HyperText encoding format�The subset of ISO/IEC 8859-1 as specified in HTML 2.0�1��Stream encoding format�MPEG-2 Systems specified in ISO/IEC 13818-1

MPEG-1 Audio specified in ISO/IEC 11172-3

AIFF-C

Real time streams defined in DAVIC 1.0�1

2

3

4��LineArt encoding format�(None specified)���CursorShape encoding format�(None specified)���InterchangedProgram encoding format�MHEG-6�1���II.5	UserInput registers

In order to have a working instantiation standard, the application domain should specify one or more InputEventRegisters. Each register has a number, which is exchanged as one of the parameters of a Scene object. The content of an InputEventRegister (which is not exchanged) is a set of numbers (representing UserInputEventTags) and a name. It is recommended that the names have as much semantic content as possible («Up» is a good name; «13» is a bad name). The name/number pairs bind a specific UserInputEventTag to a logical input event. It is the task of the engine implementer to bind the logical input event to one or more physical input events.

The following table is an example of a set of InputEventRegisters:

Register #�UserInputEventTag�Name�Comment��1�1�Up����2�Down����3�Left����4�Right����5-14�0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively����15�Select����16�Exit����17�Help����18-99�Reserved for future specification����100-�Vendor specific���II.6	Semantic constraints on the MHEG-5 applications

An MHEG-5 application domain may constrain its applications in certain dimensions. The following table contains a list of features of this Recommendation that are optional or may be supported to a higher or lesser degree. For each of these points, an MHEG-5 application domain must make a decision, as outlined in the right-hand column.

The following table is an example of such decisions.

Feature�Constraint��FreeMovingCursor�Optional��ApplicationStacking�Optional��Scaling�Optional��SceneCoordinate�System(X,Y)�The following coordinate systems are supported: 720 (576, 704 (576, 640 (576, 544 (576, 540 (576, 480 (576, 352 (576, 352 (288, 720 (480, 704 (480, 640 (480, 544 (480, 480 (480, 352 (480 and 352 (240.��SceneAspect�Ratio(W,H)�The following aspect ratios are supported: 1/1, 4/3 and 16/9��Ancillary�Connections�Optional��TrickModes�Optional��Multiple�RTGraphics�Streams(N)�One active RTGraphics at a time��MultipleAudio�Streams(N)�One audio stream of type stream and one of type memory at a time��MultipleVideo�Streams(N)�One video stream playing at a time��Overlapping�Visibles(N)�No constraint��Cloning�Mandatory���II.7	EngineEvent

This application domain reserves no particular value of EngineEvent. This is left to the application developer.

II.8	GetEngineSupport

Permissible strings to submit in the GetEngineSupport action are the ones defined in this Recommendation. In addition to these strings, a given application domain may define others; in which case, the application domain should define them precisely in a table similar to the one above. This example does not define any additional string.

II.9	Protocol mapping and external interaction

The following table provides examples to define mapping to external environment.

MHEG-5 entity�Mapping needed�Semantics of these MHEG-5 structures needs specification��OpenConnection, CloseConnection�Mapping to connection management�•	In OpenConnection:

	–	Protocol: one of the two strings: "PSTN" or "ISDN"

	–	Address: E.164 NSAP��RemoteProgram objects�Mapping to RemoteProgram call protocol in the application domain�•	In Call and Fork:

	–	Name

	–	Parameters

	–	ProgramConnectionTag

Shall be consistent with DSM-CC��Application name space�Mapping to name space of the application domain

�•	ObjectReference

•	ContentReference

Shall be consistent with DSM-CC��Application name space in case a TransitionTo action uses the ConnectionTag parameter�Mapping to the name space of the application domain�•	ObjectReference

•	ContentReference

Shall be consistent with DSM-CC��Persistent storage name space�Mapping to the name space of the persistent storage

�•	In StorePersistent and 	ReadPersistent:

	–	InFileName, OutFileName

Shall be consistent with DSM-CC���

MHEG-5 entity�Mapping needed�Semantics of these MHEG-5 structures needs specification���Stream actions�Mapping to the stream interface of the application domain�•	In Stream

	–	Speed

	–	CounterPosition��Stream events�Mapping to stream states and stream events in the application domain.�•	In Stream

	–	StreamPlaying, StreamStopped (mapping to application-domain stream state machine)

	–	CounterPosition

	–	StreamEventTag��

�

ITU-T RECOMMENDATIONS SERIES��Series A�Organization of the work of the ITU-T��Series B�Means of expression: definitions, symbols, classification��Series C�General telecommunication statistics��Series D�General tariff principles��Series E�Overall network operation, telephone service, service operation and human factors��Series F�Non-telephone telecommunication services��Series G�Transmission systems and media, digital systems and networks��Series H�Audiovisual and multimedia systems��Series I�Integrated services digital network��Series J�Transmission of television, sound programme and other multimedia signals��Series K�Protection against interference��Series L�Construction, installation and protection of cables and other elements of outside plant��Series M�TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits��Series N�Maintenance: international sound programme and television transmission circuits��Series O�Specifications of measuring equipment��Series P�Telephone transmission quality, telephone installations, local line networks��Series Q�Switching and signalling��Series R�Telegraph transmission��Series S�Telegraph services terminal equipment��Series T�Terminals for telematic services��Series U�Telegraph switching��Series V�Data communication over the telephone network��Series X�Data networks and open system communications��Series Y�Global information infrastructure��Series Z�Programming languages��

�	The server can be a virtual server, such as the collection of a number of broadcast channels on a broadcast network.

�	With the exception of the abstract mix-in classes and of the Action class.

�	For the definition of the term "active", see 3.3.

�PAGE �24�

	Recommendation T.172 (02/98)

�PAGE �2�

�PAGE �23�

		Recommendation T.172 (02/98)	

