CONTENTS

Recommendation T.200 (10/96)

PART 7

Page

Summary		287

Introduction		287

1	Scope		288

2	References		288

3	Definitions		288

4	Abbreviations		288

5	Reader’s guidance		288

5.1	Reader’s guide		288

5.2	How to use this part		289

6	DOS Operation System specific implementation		289

6.1	Introduction		289

6.2	Mapping of generic types and constants		290

6.3	Description of functions		291

6.4	Availability of NAF's PCI_HANDLE		299

Appendix I – DOS Operating System implementation coding samples		300

�PART–7:––EXCHANGE MECHANISM DOS

Summary

This part of the specification defines all details of the Operating System binding for a MS-DOSTM environment (a general presentation of the binding mechanism can be found in Part 2.

Introduction

The number of different Integrated Services Digital Network (ISDN) Programming Interfaces used by terminal equipment has hindered the development of applications using ISDN which, in turn, has proved a constraint to the usage of ISDN on modern terminal equipment.

This specification defines the ITU-T ISDN Application Programming Interface (API), called ISDN Programming Communication Interface (PCI). The ISDN-PCI is an application interface for accessing and administering ISDN.

It has been defined in order to provide a standard for terminal equipment providers that makes possible the portability of applications that use the ISDN-PCI across a range of terminal equipment based on different operating systems.

The ISDN-PCI has been defined with the Application Developer in mind and, where possible, eliminates the need for a detailed knowledge of ISDN. It has also been defined in such a manner that future ISDN extensions will not affect the operation of existing applications.

�1	Scope

This part specifies the Integrated Services Digital Network Programming Communication Interface (ISDN-PCI) exchange mechanism for the MS-DOSTM Operating System. It forms a part of the specification on ISDN-PCI.

It describes the way a PUF or a NAF, as described in Part 2, should dialogue, exchange messages and parameters to make ISDN connection.

Further parts specify the method of testing and detailed application specific requirements to determine conformance based on this part.

2	References

[1]	Part 1, General architecture.

[2]	Part 2, Basic services.

3	Definitions

This part defines the following terms:

3.1	exchange function�: PUF functionality realizing the exchange mechanism.�

3.2	exchange mechanism�: Means provided for the PUF to interchange messages with the NAF.�

3.3	ISDN programming communication interface (ISDN-PCI)�: Network (ISDN) oriented software interface providing access provisions for programming network signalling and user data exchange.�

3.4	message�: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).�

3.5	network access facility (NAF)�: Functional unit located between the ISDN-PCI and the network related layers.�

3.6	PCI user facility (PUF)�: Functional unit using the ISDN-PCI to access a NAF. In fact, the local application using the interface.�

4	Abbreviations

This part uses the following abbreviations:

API	Application Programming Interface�

DOS	stands for operating systems compatible to the MS-DOS operating system�

ISDN	Integrated Services Digital Network�

MS-DOS	Trade Mark of Microsoft Corporation, INC�

NAF	Network Access Facility�

PCI	Programming Communication Interface�

PciMPB	Pci Message Parameter Block�

PUF	Programming communication interface User Facility�

5	Reader’s guidance

5.1	Reader’s guide

This part is intended for software developers, implementors of applications and equipment manufacturers by providing them the exchange mechanims description and coding examples as described in [2] for the DOS.

�5.2	How to use this part

Readers who:

–	need a quick overview over the exchange mechanism in general need to refer to Part 2: "Basic services" [2]. Other operating systems are described. The reader should consult Part 1: "General description" [1] to get information on other Operating System availability. General description of the exchange mechanism for DOS is located in 6.1;

–	intend to implement an application using this ISDN-PCI interface for DOS should inspect clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. Coding examples are provided in Appendix I. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2];

–	intend to build an ISDN adapter card or equipment should also first read clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. For more detailed information regarding the NAF is contained in 6.4. Coding examples provided in Appendix I show how a PUF may access a NAF. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2].

Table 1 gives a descriptive list showing the full contents of this part.

Table 1 – List of contents

Clause, Appendix�Contains ...��Clause 1�... the scope of this part. This describes what this part covers��Clause 2�... references��Clause 3�... definitions of the terms used throughout this part��Clause 4�... definitions of the abbreviations used throughout this part��Clause 5�... gives an overview and reader’s guidance ��Clause 6�... operating system dependencies and implementation rules for DOS��Appendix I�... sample coding in C-language illustrating operating system specific implementation of the exchange mechanism for DOS��

6	DOS Operation System specific implementation

This part describes the operating system specific implementation for the DOS operating system. For the following description, the base MS-DOS version is the version number 3.1.

A NAF implementation under DOS shall offer the functionality of the exchange functions described in a generic way in Part 2 [2].

In this part, the mapping and implementation of these functions are described on a function per function basis. For each function, a coding example in C-language is given.

6.1	Introduction

Except for the function PciGetHandles, the implementation of the exchange method for DOS is based on a direct access mechanism. The access point is a far function address provided by the NAF. This function address is mapped to the generic type PCI_HANDLE.

To make sure that the function address provided by the NAF is correct, the PUF may check a signature located in front of the function address before calling the NAF.

�To perform this check, the PUF shall examine the memory area located just in front of the function address. There the signature is located, which shall contain the eight character constant "ISDN-PCI". If this signature is available, the PUF assumes the NAF function address is correct.

Only one access point shall be provided by the NAF. A supplied parameter shall indicate the function to be invoked. This parameter is named function code.

Parameters are passed from the PUF to the NAF using the stack. The PUF shall ensure a minimum stack space of 128 bytes on call. When the NAF receives the control of the CPU, the first parameter on the stack is the function code, followed by parameters based on the particular function.

The function code is passed as a 2-byte integer value.

The NAF has to place the return code in the AX register. The NAF procedure is not in charge of cleaning the stack on return. The C-call convention is used: the calling PUF pushes parameters right to left and restores the stack on return.

The alignment of the PCI-MPB generic structure is byte.

6.2	Mapping of generic types and constants

Under DOS, the following mapping shall be used for the generic types described in Part 2: "Basic Services" [2]:

Generic Type�DOS Mapping��PCI_INTEGER�2-byte integer (a word)��PCI_BYTEARRAY�far pointer (segment: offset address)��PCI_EXID�Unique identifier provided by NAF (2 byte integer)��PCI_HANDLE�far function address (segment: offset address)��PCI_PROCEDURE�far function address (segment: offset address)��

As usual for DOS, all values are in little endian (low byte – high byte) order.

The function code, used to invoke the exchange functions, shall be assigned as follows:

Function�Function code value��PciGetProperty�1��PciRegister�2��PciDeregister�3��PciPutMessage�4��PciGetMessage�5��PciSetSignal�6��

C-presentation of these definitions looks as follows:

/*

 * Generic type mappings

 */

typedef short int	PCI_INTEGER;

typedef char far *	PCI_BYTEARRAY;

typedef short int	PCI_EXID;

typedef short int	(far *	PCI_HANDLE) ();

typedef void	(far *	PCI_PROCEDURE) ();

�/*

 * Function code constants

 */

#define PCIGETPROPERTY	1

#define PCIREGISTER	2

#define PCIDEREGISTER	3

#define PCIPUTMESSAGE	4

#define PCIGETMESSAGE	5

#define PCISETSIGNAL	6

/*

 * Signature

 */

#define PCISIGNATURE	'ISDN-PCI'	/* multi characters constant */

6.3	Description of functions

The PUF is in charge to provide a minimal stack during a function call. The minimal stack size is 128 bytes.

In the description, the access to one is described for simplicity in the coding examples. However, the access of a PUF to multiple NAFs is not excluded.

6.3.1	PciGetHandles

Under DOS, the implementation of the PciGetHandles function shall use a character device driver named "PCIDD$" to retrieve the available PCI-Handles. This function call is the exception on the basic principle – direct access – under DOS.

The maximum theoretical amount of PCI-Handles which can be retrieved is 4096. However, the implemented device driver will probably have a practical limit which lies far below and depends on the implementation of the device driver itself.

The following operation shall be performed by the PUF, in order to:

–	open the "PCIDD$" character device driver;

–	prepare a buffer in memory, big enough to hold the maximum amount of PCI-Handles to be retrieved;

–	issue an IOCTL system read call: Receive control Data from Character Device;

·	BX shall contain the dos handle of the device driver;

·	CX shall contain the length of the memory buffer prepared above;

·	DS:DX shall point to the memory buffer;

–	check the success of the operation (check carry flag);

–	in case of error, optionally issue a DOS Get Extended Error function call to receive a more comprehensive error code;

–	on successful return, AX contains the number of bytes provided by the device driver, the buffer contains the available PCI-Handles in a row. The number of available PCI-Handles is calculated by dividing the AX value by 4, the size of a far address function pointer;

–	close the device driver.

C-coding example:

...

#include <dos.h>		/* declarations for IOCTL call */

#include <fcntl.h>		/* declarations for open mode */

...

#define SUCCESS	0	/* No error */

#define MAXHANDLES	64	/* max amount of handles to be read */

�...

PCI_HANDLE PCIHandlesArray[MAXHANDLES]	/* buffer for receiving PCI-Handles */

...

PCI_INTEGER MaxHandles;		/* max amount of handles to be read */

PCI_HANDLE far * PCIHandles;		/* far pointer to buffer of PCI-Handles */

PCI_INTEGER far * ActualHandles;		/* far ptr to amount of PCI-Handles received */

{

int fildes;			/* file descriptor */

int error;

union _REGS regs;

struct _SREGS segregs;

struct _DOSERROR errorinfo;

/* open the driver */

if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

	{

	/* device driver not accessible; perform error processing */

	error = ...

	}

else

	{

	/* prepare IOCTL read from device driver */

	_segread (&segregs);

	segregs.ds = FP_SEG (PCIHandles);	/* set-up segment address */

	regs.x.dx = FP_OFF (PCIHandles);	/* and offset */

	regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);

	regs.x.bx = fildes;		/* set dos file handle */

	regs.x.ax = 0x4402;		/* IOCTL read from character device */

	/* issue IOCTL read from device driver */

	_intdosx (®s, ®s, &segregs);

	/* close the driver */

	_dos_close (fildes);

	/* check for error */

	if (regs.x.cflag & 1)		/* check processors carry flag */

		{

		/* error has occurred; perform error processing */

		_dosexterr (&errorinfo);

		error = doserror.exterror;

		...

		}

	else

		{

		/* Successful operation. Set count of handles received */

		*ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);

		error = SUCCESS;

		}

...

�6.3.2	PciGetProperty

This function is in charge to retrieve the NAF-Property from the NAF. To issue the function call, the PUF must possess the PCI-Handle of the NAF it wants to access. Before accessing the NAF, the PUF may check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI�Handle is pointing to.

The following operation shall be carried out by the PUF, in order:

–	may examine memory area pointed to by the PCIHandle to find out if NAF is loaded and check the signature for the character constant "ISDN-PCI" in that case;

–	call the address with the PciGetProperty function code and the parameters provided by the PUF;

–	check return code.

C-coding example:

...

#include <memory.h>		/* memory compare func declarations */

...

#define SUCCESS	0	/* No error */

#define PCIGETPROPERTY	1

#define PCISIGNATURE	"ISDN-PCI"

#define SIGNATURESIZE	8

...

PCI_HANDLE PCIHandle;

PCI_INTEGER MaximumSize;

PCI_BYTEARRAY Property;

PCI_INTEGER far * ActualSize;

{

PCI_INTEGER error;

char far * signature;

signature = (char far *) PCIHandle – SIGNATURESIZE;

if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) == SUCCESS)

	{

	/* signature is correct. call the entry point */

	error = (*PCIHandle) (PCIGETPROPERTY, MaximumSize, Property, ActualSize);

	...

	}

else

	{

	/* signature wrong. process error */

	error = ...

...

6.3.3	PciRegister

This function is in charge to provide an association between a PUF and a NAF. To issue the function call, the PUF must possess the PCI-Handle of the NAF it wants to access. Before accessing the NAF, the PUF may check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI-Handle is pointing to.

For this function call, two structures shall be prepared by the PUF and shall be passed on the function stack. The first structure is the PCIRegisterInfo structure as declared in Part 2 [2]. The second is the operating system dependent PCIOpSysInfo structure, which for DOS has the following layout:

�

Element name�Type�Validity�Explanation��MaxNCOCount�2-byte integer�On call�Shall be set to the maximum amount of NCOs the PUF intends to create during the association��MaxPacketSize�2-byte integer�On call�Shall be set to the maximum size of a data packet the NAF shall accept on a user connection��MaxPacketCount�2-byte integer�On call�Shall be set to the maximum amount of packets of the above size the NAF shall buffer per user connection��AddBufferSize�4-byte integer�On call�If the PUF wants to provide buffer space to the NAF, it shall set this value to the size of the buffer space it donates. Otherwise the value shall be set to zero (0).��AddBufferSpace�far address (segment: offset)�On call�If the structure element AddBufferSize is non-zero, this element shall point (far) to the donated, additional buffer space.��BufferNeeded�4-byte integer�On return�In case the NAF has not enough buffer space available to guarantee the requested connection characteristics, the amount of additional buffer needed is returned into this element by the NAF.��

The information provided with this structure helps the NAF to optimize its internal resources. Therefore the information given by the PUF shall be carefully weighted. This is especially true in an environment, where a NAF serves several PUFs at the same time.

In case a NAF has not enough memory resources available to fulfill the requested characteristics, the PciRegister function will fail and return a BuffersTooSmall error code. In this case the amount of buffer missing can be taken from the BufferNeeded element of the above structure.

On the successful return of the PciRegister function, the Exchange-ID becomes available, which shall be used as a parameter on subsequent exchange mechanism function calls.

The following operation shall be carried out by the PUF, in order to:

–	Examine memory area pointed to by the PCIHandle to find out if NAF is loaded. Check the signature for characters "ISDN-PCI".

–	Allocate and setup the two structures PCIRegisterInfo and PCIOpSysInfo. The PCIOpSysInfo structure may optionally contain a pointer to additional buffer space which shall be donated to the NAF.

–	Call the exchange function with the PciRegister function code and the parameters provided by the PUF.

–	Check return code – If the return code indicates OutOfBuffers then the call may be repeated with correct adjusted buffer space to be donated to the NAF.

–	Keep the returned Exchange-ID for later calling.

C-coding example:

...

#include <memory.h>	/* memory compare func declarations */

#include <malloc.h>	/* memory allocation functions */

...

#define SUCCESS		0	/* No error */

#define PCIREGISTER	2	

#define PCISIGNATURE	'ISDN-PCI'	

#define SIGNATURESIZE	8	

#define E_OUT_OF_BUFFERS	148	/* BuffersTooSmall error code */

�...

struct pci_register {	/* structure containing registering info */

	PCI_INTEGER	PUFVersion;	/* optional: give PUF version */

	PCI_INTEGER	PUFType;		/* optional: give PUF type */

	PCI_INTEGER	MaxMsgSize;	/* return: max size of a message */

};

struct pci_opsys {			/* structure containing registering info */

	short int	MaxNCOCount;		/* optional: give max count of NCOs */

	short int	MaxPacketSize;		/* optional: give expected max size and */

	short int	MaxPacketCount;		/* max count of packets to buffer */

	long int	AddBufferSize;		/* optional: give to NAF size and */

	void far *	AddBufferSpace;		/* pointer to additional buffer */

	long int	BufferNeeded;		/* return: amount of add buffer needed */

};

...

/*

 * before calling the PCIRegister function further down, allocate and prepare the structures

 * requested by this function call

 */

struct pci_register PCIRegisterInfo {

	2,			/* Set PUF version to 2, equaling current Recommendation Version */

	0,			/* Set PUF type to 0 as indicated in [2] */

	0			/* Initialize (expected) return value of MaxMsgSize */

};

struct pci_opsys PCIOpSysInfo {

	2,			/* Set max amount NCOs PUF intends to create */

	1024,			/* Set max size of data packets NAF shall accept */

	8,			/* Set max count of packets NAF shall buffer per NCO */

	0,			/* Set size of memory PUF wants to donate to NAF */

	(void far *) NULL,	/* Set pointer to (donated) buffer space */

	0			/* Initialize (expected) return value of BufferNeeded */

};

...

PCI_HANDLE PCIHandle;

struct pci_register far * RegisterStruct;;

PCI_EXID far * ExchangeID

{

PCI_INTEGER error;

char far * signature;

void far * buffer;

signature = (char far *) PCIHandle – SIGNATURESIZE;

if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) != SUCCESS)

	{

	/* signature wrong. process error */

	error = ...

	}

else

	{

	/* signature is correct. call the entry point */

	error = (*PCIHandle) (PCIREGISTER, &PCIRegisterInfo, &PCIOpSysInfo, ExchangeID);

	if (error == E_OUT_OF_BUFFERS)

		{

		/* NAF needs more buffer space; try to allocate */

		buffer = _fmalloc ((size_t) PCIOpSysInfo.BufferNeeded);

		if (buffer)

�			{

			/* there is buffer, so it´s worth another try; adjust PCIOpSysInfo structure */

			PCIOpSysInfo.AddBufferSize = PCIOpSysInfo.BufferNeeded;

			PCIOpSysInfo.AddBufferSpace = buffer;

			PCIOpSysInfo.BufferNeeded = 0;

			/* call PciRegister again ... */

			}

		}

	error=(*PCIHandle)(PCIREGISTER,&PCIRegisterInfo,&PCIOpSysInfo,ExchangeID);

	if (error)

		{

		/* Process error */

		...

…

6.3.4	PciDeregister

This function is in charge to disassociate a PUF and a NAF.

The following operation shall be carried out by the PUF, in order:

–	call the address with the PciDeregister function code and the Exchange-ID related to the current association;

–	check return code.

C-coding example:

...

#define PCIDEREGISTER	3

...

PCI_HANDLE PCIHandle;

PCI_EXID ExchangeID;

{

PCI_INTEGER error;

/* call the entry point */

error = (*PCIHandle) (PCIDEREGISTER, ExchangeID);

...

6.3.5	PciPutMessage

This function is in charge to provide a message from a PUF to a NAF. Parameters shall be provided in the same order as indicated in the generic description of the PciPutMessage function.

The following operation shall be carried out by the PUF, in order to:

–	call the address with the PciPutMessage function code and the Exchange-ID related to the current association as well as the correct set-up PCI Message Parameter Block and the associated buffers;

–	check return code.

C-coding example:

...

#define PCIPUTMESSAGE	4

...

struct pci_mpb {

		PCI_INTEGER	MessageID;

		PCI_INTEGER	MessageMaximumSize;

�		PCI_INTEGER	MessageActualUsedSize;

		PCI_INTEGER	DataMaximumSize;

		PCI_INTEGER	DataActualUsedSize;

};

...

PCI_HANDLE PCIHandle;

PCI_EXID ExchangeID;

struct pci_mpb far * PCIMpb;

PCI_BYTEARRAY Message;

PCI_BYTEARRAY Data;

{

PCI_INTEGER error;

/* call the entry point */

error = (*PCIHandle) (PCIPUTMESSAGE, ExchangeID, PCIMpb, Message, Data);

...

}

6.3.6	PciGetMessage

This function is in charge to provide the PUF with a message coming from the NAF. Parameters shall be provided in the same order as indicated in the generic description of the PciGetMessage function.

The following operation shall be carried out by the PUF, in order to:

–	call the address with the PciGetMessage function code and the Exchange-ID related to the current association as well as the correct set-up PCI Message Parameter Block and the associated buffers;

–	check return code.

C-coding example:

...

#define PCIGETMESSAGE	5

...

struct pci_mpb {

		PCI_INTEGER	MessageID;

		PCI_INTEGER	MessageMaximumSize;

		PCI_INTEGER	MessageActualUsedSize;

		PCI_INTEGER	DataMaximumSize;

		PCI_INTEGER	DataActualUsedSize;

};

...

PCI_HANDLE PCIHandle;

PCI_EXID ExchangeID;

struct pci_mpb far * PCIMpb;

PCI_BYTEARRAY Message;

PCI_BYTEARRAY Data;

{

PCI_INTEGER error;

/* call the entry point */

error = (*PCIHandle) (PCIGETMESSAGE, ExchangeID, PCIMpb, Message, Data);

...

}

�6.3.7	PciSetSignal

This function is in charge to provide the NAF with the address of a function located inside the PUF, which shall be called-back if a message becomes available for the PUF.

The following operation shall be carried out by the PUF, in order to:

–	call the address with the PciSetSignal function code and the Exchange-ID related to the current association as well as the correct set-up function address of the call-back routine;

–	check return code.

C-coding example:

#define PCISETSIGNAL	6

/* CallBack function called in interrupt context */

void far CallBackFunc ()

{

...

return;

}

/*

 * Code to set up the notification process

 */

...

PCI_HANDLE PCIHandle;

PCI_EXID ExchangeID;

{

PCI_INTEGER error;

/* call the entry point */

error = (*PCIHandle) (PCISETSIGNAL, ExchangeID, &CallBackFunc);

...

}

The NAF calls-back the PUF with the following conventions applying:

–	The NAF provides a minimal stack size of 128 bytes.

–	The values of the DS and ES segments are undefined.

–	Interrupts are disabled.

Gained control, the PUF:

–	may or may not enable interrupts;

–	is allowed call the NAF via the PciGetMessage or the PciPutMessage function;

–	shall not invoke other exchange function calls besides the PciGetMessage and the PciPutMessage functions;

–	shall not issue DOS system calls;

–	shall not let interrupts disabled over an extended period of time and shall return from the call-back function as quick as possible.

The NAF called via the PCIGetMessage or the PciPutMessage function may enable interrupts. However, the NAF shall not call the call-back routine again, until the call-back routine has returned normally.

At the end of the call-back routine the PUF shall return to the NAF. Only the SS:SP register pair has to be preserved by the PUF.

�6.4	Availability of NAF's PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse action – extraction from the list of available NAFs – is described too. These actions are operating system specific.

6.4.1	Declaration action

Under DOS, the NAF uses the PCIDD$ Device Driver to declare itself, issuing an IOCTL write command, passing a structure containing the action code (Declare) and the handle of the NAF.

The maximum number of NAF than the 'PCIDD$' Device Driver can register is 32.

The following operation will take place in order to:

–	Open the 'PCIDD$' driver.

–	Prepare the following structure :

·	One word: Command code, 0x4544 (characters 'DE', DEclaration).

·	One double-word: Address of the NAF entry point.

–	Issue a IOCTL system call write command :

·	CX contains the size of the declaration structure (6).

·	DS:DX point to the structure.

–	Check the success of the operation (check CARRY FLAG).

–	In case of error, issue a Get Extended Error function call to get a more comprehensive error code.

–	Close the driver.

The command will end successfully even if the NAF is already declared. In this case, no action takes place.

The command gives an error on the following cases. In these cases, no action takes place:

–	Standard DOS errors (Invalid handle, Invalid function number, etc.).

–	The length of the buffer passed (register CX) is not correct (extended error 24, Bad request structure length).

–	The command code is invalid (extended error 31, General failure).

–	Already 32 NAF are declared and the NAF to be declared is not already declared (extended error 29, Write fault).

6.4.2	Extraction action

The NAF uses the PCIDD$ Device Driver to extract itself, issuing an IOCTL write command, passing a structure containing the action code (Extract) and the handle of the NAF.

The following operation will take place in order to:

–	Open the 'PCIDD$' driver.

–	Prepare the following structure:

·	One word: Command code, 0x5845 (characters 'EX', EXtraction).

·	One double-word: Address of the NAF entry point.

–	Issue a IOCTL system call write command:

·	CX contains the size of the extraction structure (6);

·	DS:DX point to the structure.

–	Check the success of the operation (check CARRY FLAG).

–	In case of error, issue a Get Extended Error function call to get a more comprehensive error code.

–	Close the driver.

�The command will be successful even if the NAF has not already been declared. In this case, no action takes place.

The command gives an error on the following cases. In these cases, no action takes place:

–	standard DOS errors (Invalid handle, Invalid function number, etc.);

–	the length of the buffer passed (register CX) is not correct (extended error 24, Bad request structure length);

–	the command code is invalid (extended error 31, General failure).

Appendix I��DOS Operating System implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of view.

/***

This library code may be linked to a PUF to allow uniform access to multiple NAFs. The access to the different NAFs by use of a unique ExID is achieved by the use of a local table, which allows MAX_EXID entries.

***/

/*

 * Include files

 */

#include <dos.h>

#include <fcntl.h>

#include <memory.h>

#include <malloc.h>

#include <stdio.h>

/*

 * General typedefs

 */

typedef void	(* PFRV) ();	/* Pointer to Function Returning Void	*/

typedef short int	(far * FPFRS) ();	/* Far Pointer to Function Returning Short	*/

typedef void	(far * FPFRV) ();	/* Far Pointer to Function Returning Void	*/

typedef int	(far * FPFRI) ();	/* Far Pointer to Function Returning Int	*/

/*

 * Mapping of generic type definitions

 */

typedef short int	PCI_INTEGER;

typedef char far *	PCI_BYTEARRAY;

typedef short int	PCI_EXID;

typedef FPFRI	PCI_HANDLE;

typedef FPFRV	PCI_PROCEDURE;

/*

 * Definition of function codes

 */

�#define PCIGETPROPERTY	(short) (1)

#define PCIREGISTER	(short) (2)

#define PCIDEREGISTER	(short) (3)

#define PCIPUTMESSAGE	(short) (4)

#define PCIGETMESSAGE	(short) (5)

#define PCISETSIGNAL	(short) (6)

/*

 * Error definitions

 */

#define E_DEVICE_DRIVER_NOT_FOUND	128

#define E_DEVICE_DRIVER_CONTROL	128

#define E_NAF_NOT_FOUND	130

#define E_NAF_INVALID_ADDRESS	130

#define E_TOO_MANY_ASSOCIATIONS	133

#define E_INVALID_EXCHANGE_ID	136

/*

 * Other definitions

 */

#define SUCCESS	0

#define MAX_EXID	32 /* allow 32 PUF_NAF associations */

/*

 * Structures

 */

struct pci_mpb {

	PCI_INTEGER MessageID;

	PCI_INTEGER MessageMaximumSize;

	PCI_INTEGER MessageActualUsedSize;

	PCI_INTEGER DataMaximumSize;

	PCI_INTEGER DataActualUsedSize;

};

struct pci_register {	/* structure containing registering info */

	PCI_INTEGER PUFVersion;	/* optional: give PUF version */

	PCI_INTEGER PUFType;	/* optional: give PUF type */

	PCI_INTEGER MaxMsgSize;	/* return: max size of a message */

};

struct pci_opsys {		/* structure containing registering info */

	short int	MaxNCOCount;	/* optional: give max count of NCOs */

	short int	MaxPacketSize;	/* optional: give expected max size and */

	short int	MaxPacketCount;	/* max count of packets to buffer */

	long int	AddBufferSize;	/* optional: give to NAF size and */

	void far *	AddBufferSpace;	/* pointer to additional buffer */

	long int	BufferNeeded;	/* return: amount of add buffer needed */

};

struct loc_exid_map {	/* locally used structure for ExIDs */

	PCI_HANDLE	pci_handle;

	PCI_EXID	exchange_id;

};

/*

 * Functional constants

 */

const char PCIsign[8]="ISDN-PCI";

/*

 * Local variables

 */

static struct loc_exid_map _exid_map[MAX_EXID];	/* table holding MAX_EXID ExID entries */

static short int_exid_cnt = MAX_EXID;	/* count of free places inside ExID table */

�/**

PciGetHandles:	Asks the "PCIDD$" device driver for a list of available

	PCI-Handles (NAF entry points).

	Returns available PCI-Handles into the given PCIHandles buffer.

	The maximum amount of PCI-Handles requested is given in MaxHandles.

	Function will fail, if MaxHandles is less than the Handles available in the driver.

***/

short int PciGetHandles (short int MaxHandles,

		FPFRI * PCIHandles,

		short int * ActualHandles)

{

short int fildes;	/* file descriptor */

union _REGS regs;

struct _SREGS segregs;

	/* open the driver */

if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

	return E_DEVICE_DRIVER_NOT_FOUND;	/* device driver not accessible; return error */

	/* prepare IOCTL read from device driver */

_segread (&segregs);

segregs.ds = FP_SEG (PCIHandles);	/* set-up segment address */

regs.x.dx = FP_OFF (PCIHandles);	/* and offset */

regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);

regs.x.bx = fildes;			/* set dos file handle */

regs.x.ax = 0x4402;		/* IOCTL read from character device */

	/* issue IOCTL read from device driver */

_intdosx (®s, ®s, &segregs);

	/* close the driver */

_dos_close (fildes);

	/* check for error */

if (regs.x.cflag & 1)		/* check processors carry flag */

	return E_DEVICE_DRIVER_CONTROL;	/* error has occured; return error */

	/* Successful operation. Compute count of PCI-Handles received */

*ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);

return SUCCESS;

}	/* End of PciGetHandles() */

/**

PciGetProperty:	Asks the NAF for it's properties, which is a list of TLV coded topics.

	Returns the properties into the given Property buffer.

	The maximum size of the Property buffer is given in MaximumSize.

	Function will fail, if MaximumSize is less than the size of the Property the

	NAF can deliver.

***/

short int PciGetProperty (FPFRI PCIHandle,

	short int MaximumSize,

	char * Property,

	short int * ActualSize)

{

register short int error;

unsigned char far * signature;

�/* Check if NAF is available */

if (PCIHandle == NULL)

	return E_NAF_INVALID_ADDRESS;	/* NAF inaccessible, invalid address */

/* compute address of signature and check it */

signature = (unsigned char far *) PCIHandle – sizeof(PCIsign);

if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

	return E_NAF_NOT_FOUND;	/* NAF inaccessible invalid signature */

/* Call the NAF to obtain the property information */

error = (*PCIHandle) (PCIGETPROPERTY,

	MaximumSize,

	(char far *) Property,

	(short int far *) ActualSize);

return error;

}	/* End of PciGetProperty() */

/**

PciRegister:	Tries to associate calling PUF with selected NAF.

	Delivers the ExID, which has to be used in subsequent calls.

	Two structures have to be provided by the calling PUF:

	–	the PCIRegisterInfo; and

	–	the PCIOpSysInfo structure.

***/

short int PciRegister (FPFRI PCIHandle,

	struct pci_register * PCIRegisterInfo,

	struct pci_opsys * PCIOpSysInfo,

	short int * ExID)

{

register short int error;

register short int exchange_id;

unsigned char far * signature;

struct loc_exid_map *exid_map;	/* dynamic pointer to local _exid_map tab */

/* Check if NAF is available */

if (PCIHandle == NULL)

	return E_NAF_INVALID_ADDRESS;	/* NAF inaccessible, invalid address */

/* compute address of signature and check it */

signature = (unsigned char far *) PCIHandle – sizeof(PCIsign);

if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

	return E_NAF_NOT_FOUND;	/* NAF inaccessible invalid signature */

/* check if there is still room in our local _exid_map table */

if (! _exid_cnt)

	return E_TOO_MANY_ASSOCIATIONS;	/* Indicate table exhausted */

/* Call the NAF to inform it of a new association PUF */

error = (*PCIHandle) (PCIREGISTER,

	(struct pci_register far *) PCIRegisterInfo,

	(struct pci_opsys far *) PCIOpSysInfo,

	(short int far *) ExID);

if (! error)

	{

	/* Association was successful; record it in local table */

	exchange_id = 0;

	exid_map = &_exid_map[0];	/* setup pointer into local _exid_map table */

	while (exid_map->pci_handle)

�		{

		exid_map++;

		exchange_id += 1;

		}

	exid_map->exchange_id = *ExID;

	exid_map->pci_handle = PCIHandle;

	ExID = exchange_id;	/ compute and set Exchange-ID */

	_exid_cnt -= 1;

	}

return error;

}	/* End of PciRegister() */

/**

PciDeregister:		Terminates an existing association with a NAF.

	The ExID of an existing association has to be provided.

***/

short int PciDeregister (PCI_EXID ExID)

{

register short int error;

struct loc_exid_map *exid_map;	/* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */

exid_map = &_exid_map[ExID];

if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

	return E_INVALID_EXCHANGE_ID;

/* Call the NAF to inform it of the end of the association */

error = (*exid_map->pci_handle) (PCIDEREGISTER,

	exid_map->exchange_id);

/* delete association from local table */

exid_map->pci_handle = NULL;

_exid_cnt += 1;

return error;

}	/* End of PciDeregister() */

/**

PciPutMessage:	Transfers a Message and associated Data to the NAF.

***/

short int PciPutMessage (short int ExID,

	struct pci_mpb * PCIMPB,

	char * Message,

	char * Data)

{

register short int error;

struct loc_exid_map *exid_map;	/* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and set up pointer into local _exid_map table */

exid_map = &_exid_map[ExID];

if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

	return E_INVALID_EXCHANGE_ID;

�/* Call the NAF and provide the message */

error = (*exid_map->pci_handle) (PCIPUTMESSAGE,

	exid_map->exchange_id,

	(struct pci_mpb far *) PCIMPB,

	(char far *) Message,

	(char far *) Data);

return error;

}	/* End of PciPutMessage() */

/**

PciGetMessage:	Receives a Message and associated Data from the NAF.

***/

short int PciGetMessage (short int ExID,

	struct pci_mpb * PCIMPB,

	char * Message,

	char * Data)

{

register short int error;

struct loc_exid_map *exid_map;	/* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */

exid_map = &_exid_map[ExID];

if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

	return E_INVALID_EXCHANGE_ID;

/* Call the NAF and receive the message */

error = (*exid_map->pci_handle) (PCIGETMESSAGE,

	exid_map->exchange_id,

	(struct pci_mpb far *) PCIMPB,

	(char far *) Message,

	(char far *) Data);

return error;

}	/* End of PciGetMessage() */

/**

PciSetSignal:		Hands the address of a SignalProcedure to the NAF.

	The SignalProcedure then will receive notification on communication

	events (i.e. Message available for retrieval).

***/

short int PciSetSignal (short int ExID,

	short int Signal,

	PFRV SignalProcedure)

{

register short int error;

struct loc_exid_map *exid_map;	/* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and set up pointer into local _exid_map table */

exid_map = &_exid_map[ExID];

if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

	return E_INVALID_EXCHANGE_ID;

/* Call the NAF to set the signal function */

error = (*exid_map->pci_handle) (PCISETSIGNAL,

	exid_map->exchange_id,

	(FPFRV) SignalProcedure);

return error;

}	/* End of PciSetSignal() */

�CONTENTS

Recommendation T.200 (10/96)

PART 8

Page

Summary		309

Introduction		309

1	Scope		310

2	References		310

3	Definitions		310

4	Abbreviations		310

5	Reader’s guidance		310

5.1	Reader’s guide		310

5.2	How to use this part		311

6	Windows Operating System specific implementation		311

6.1	Introduction		311

6.2	Implementation of basic type		312

6.3	C-structures and function prototypes		312

6.4	Description of functions		313

6.5	Availability of NAF’s PCI_HANDLE		316

Appendix I – WINDOWS Operating System implementation coding samples		317

�PART 8: WINDOWS EXCHANGE MECHANISM

Summary

This part of the multi-part specification defines all details of the Operating System binding for a WindowsTM environment (a general presentation of the binding mechanism can be found in Part 2).

Introduction

The number of different Integrated Services Digital Network (ISDN) Programming Interfaces used by terminal equipment has hindered the development of applications using ISDN which, in turn, has proved a constraint to the usage of ISDN on modern terminal equipment.

This Specification defines the ITU-T ISDN Application Programming Interface (API), called ISDN Programming Communication Interface (PCI). The ISDN-PCI is an application interface for accessing and administering ISDN.

It has been defined in order to provide a standard for terminal equipment providers that make possible the portability of applications that use the ISDN-PCI across a range of terminal equipment based on different operating systems.

The ISDN-PCI has been defined with the Application Developer in mind and, where possible, eliminates the need for a detailed knowledge of ISDN. It has also been defined in such a manner that future ISDN extensions not affect the operation of existing applications.

�1	Scope

This part specifies the Integrated Services Digital Network Programming Communication Interface (ISDN-PCI) exchange mechanism for the Windows Operating System. It forms a part of the specification on ISDN-PCI.

It describes the way a PUF or a NAF as described in Part 2: "Basic services", should exchange messages and parameters to make ISDN connection.

Further specifications specify the method of testing and detailled application specific requirements to determine conformance based on this part.

2	References

[1]	Part 1, General architecture.

[2]	Part 2, Basic services.

3	Definitions

This part defines the following terms:

3.1	exchange function�: PUF functionality realizing the exchange mechanism.�

3.2	exchange mechanism�: Means provided for the PUF to interchange messages with the NAF.�

3.3	ISDN programming communication interface (ISDN-PCI)�: ISDN oriented software interface providing access provisions for programming network signalling and user data exchange.�

3.4	message�: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).�

3.5	network access facility (NAF)�: Functional unit located between the ISDN-PCI and the network related layers.�

3.6	PCI user facility (PUF)�: Functional unit using the ISDN-PCI to access a NAF. E.g. the local application using the interface.�

4	Abbreviations

This part uses the following abbreviations:

API	Application Programming Interface�

ISDN	Integrated Services Digital Network�

NAF	Network Access Facility�

PCI	Programming Communication Interface�

PciMPB	Pci Message Parameter Block�

PUF	Programming communication interface User Facility�

WINDOWS	Stands for the WindowsTM Operating Systems based on version 3.0. Windows is Trade Mark of Microsoft Corporation, Inc.�

5	Reader’s guidance

5.1	Reader’s guide

This part is intended for software developers, implementors of applications and equipment manufacturers by providing them the exchange mechanisms description and coding examples as described in [2] for the WindowsTM Operating System.

�5.2	How to use this part

Readers who:

–	need a quick overview over the exchange mechanism in general should refer to Part 2: "Basic services" [2]. Other operating systems are described. The readers should consult Part 1: "General architecture" [1] to get information on other Operating System availability. General description of the exchange mechanism for WindowsTM is located in 6.1;

–	intend to implement an application using this ISDN-PCI interface for WindowsTM should inspect clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. Coding examples are provided in Appendix I. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2];

–	intend to build an ISDN adapter card or equipment should also first read clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. More detailed information regarding the NAF is contained in 6.4. Coding examples provided in Appendix I show how a PUF may access a NAF. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2].

Table 1 provides a list showing the major clauses of this part.

Table 1 – List of contents

Clause, Appendix�Contains ...��Clause 1�... the scope of this part. This describes what this part covers��Clause 2�... references��Clause 3�... definitions of the terms used throughout this part��Clause 4�... definitions of the abbreviations used throughout this part��Clause 5�... gives an overview and reader’s guidance��Clause 6�... operating system dependencies and implementation rules for WindowsTM��Appendix I�... sample coding in C-language illustrating operating system specific implementation of the exchange� mechanism for WindowsTM��

6	Windows Operating System specific implementation

6.1	Introduction

Except for the PciGetHandles function call, the DLL mechanism is the basic mechanism used to support the ISDN-PCI exchange method under Windows. Every NAF has to be DLL and has to export an entry point per ISDN-PCI function using the same name (PciGetProperty, PciRegister, PciGetMessage, PciPutMessage, PciSetSignal, PciDeregister).

NOTE – Function names exported by the NAF are the same as the description made in Part 2 [2] but parameters are different.

PciGetHandles needs an access to the PCI.INI file.

PciRegister and PciGetProperty check if the DLL, accessible by its name, is available.

To access a NAF the only need for a PUF is to know the name of the DLL. The address access to the DLL may be to provide transparently to the PUF inside the Pci’s exchange mechanism functions as shown in Appendix I.

�The PciRegister function dynamically loads the NAF. It needs to keep trace of the handle of the NAF as a DLL, so this handle is part of the Exchange Identifier. The NAF needs also to keep trace of the PUF, so it assigns an Identifier to the PUF at registration time. This NAF-provided Identifier is the other part of the Exchange Identifier.

Under Windows, the common calling conventions to provide parameter to a DLL is the PASCAL calling convention. This convention is also used by the ISDN-PCI exchange method in that case.

Pointer parameters are far. The PCI-MPB structure is always passed via a pointer. The Exchange Identifier structure is always passed via a pointer too.

The structure alignment is byte.

6.2	Implementation of basic type

Under Windows, the following values shall be used:

PCI_HANDLE		name of the DLL

PCI_EXID	Structure contents

	handle provided by Windows when the DLL is loaded (hInstance)

	Unique Identifier provided by NAF to identify the PUF

PCI_PROCEDURE	exported function address (FARPROC) provided by the PUF

PCI_INTEGER	2 bytes

PCI_BYTEARRAY	far pointer

6.3	C-structures and function prototypes

/* Basic types */

typedef SHORT				PCI_INTEGER;

typedef LPSTR				PCI_BYTEARRAY;

typedef LPSTR				PCI_HANDLE;

typedef struct				{

					HINSTANCE	DLLInstance;

					PCI_INTEGER	Exchange_Id;

					} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)(void);

/*

 * Structures

 */

struct pci_mpb {

		PCI_INTEGER	MessageID;

		PCI_INTEGER	MessageMaximumSize;

		PCI_INTEGER	MessageActualUsedSize;

		PCI_INTEGER	DataMaximumSize;

		PCI_INTEGER	DataActualUsedSize;

};

struct pci_register {					/* structure containing registering info */

	PCI_INTEGER PUFVersion;		/* optional: give PUF version */

	PCI_INTEGER PUFType;			/* optional: give PUF type */

	PCI_INTEGER MaxMsgSize;		/* return: max size of a message */

};

struct pci_opsys {				/* structure containing specific operating system info */

	int		DummyParameter;	/* No specific requirement for WINDOWS */

};

/* Exchange functions prototypes */

�PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

						PCI_BYTEARRAY PCIHandles,

						PCI_INTEGER far * ActualHandles);

PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

						PCI_INTEGER MaximumSize,

						PCI_BYTEARRAY Property,

						PCI_INTEGER far * ActualSize);

PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,

						struct pci_register * PCIRegisterInfo,

						struct pci_opsys * PCIOpSysInfo,

						PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciDeregister (PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciPutMessage (PCI_EXID far *ExID,

							struct pci_mpb far *PCIMPB,

							PCI_BYTEARRAY Message,

							PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciGetMessage (PCI_EXID far *ExID,

							struct pci_mpb far *PCIMPB,

							PCI_BYTEARRAY Message,

							PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciSetSignal (PCI_EXID far *ExID,

							PCI_INTEGER Signal,

							PCI_PROCEDURE SignalProcedure);

6.4	Description of functions

This subclause describes the implementation, under Windows, of the ISDN-PCI exchange method functions. During a PUF to NAF call, the size of the stack must be at least 1024 bytes deep.

6.4.1	PciGetHandles

Under WINDOWS, the PciGetHandles uses a PCI.INI file in the WINDOWS directory to get available PCI_HANDLEs.

The section [Drivers] in the PCI.INI file contains all entrys of installed NAFs. Each entry has the format:

	pciDriver<number>=DLLName (number=1..32)

The following operations shall get all names of installed NAF drivers:

–	loops from 1 to 32

·	constructs of the keyName 'pciDriver' associated to the current loop value;

·	issue a GetPrivateProfileString using:

sectionKey = 'DRIVERS';

the keyName constructs before;

no default value;

a maximum size equal to 128;

FileName = 'PCI.INI'.

6.4.2	PciGetProperty

This function is in charge to provide the PUF with the PROPERTY of the NAF. Implicitly it checks if the NAF is available, when loading the library via the LoadLibrary function.

�The following operations shall take place, in order to:

–	load the DLL;

–	get the address of the PciGetProperty function exported by the NAF;

–	call to this address with the parameters provided by the PUF;

–	free the loaded library.

6.4.3	PciRegister

This function is in charge to provide an association between a PUF and a NAF. The NAF is loaded and the DLLInstance part of the Exchange Identifier is provided. The availability of the chosen NAF is checked during the load of the library. The library is identified by its name. Parameters for the registration operation are brought together according to the following structure:

–	PUFType (PCI_INTEGER)

–	PUFVersion (PCI_INTEGER)

–	MaxMsgSize (PCI_INTEGER) where the NAF will give the maximum size for a message.

The following operations shall take place, in order to:

–	Load the DLL.

–	Provide the DLLInstance part of the Exchange Identifier with the DLL Instance.

–	Get the address of the PciRegister function exported by the NAF.

–	Call to this address to inform the NAF of a new PUF. The address of the registration parameters structure and the address of the Exchange Identifier structure are passed to the NAF as parameters.

–	On return from the NAF, the Exchange_Id part of the Exchange Identifier and the maximum message size parameter of the registration parameter structure have been provided by the NAF.

–	Return to the PUF with the return code from the NAF.

6.4.4	PciDeregister

This function is in charge to disassociate a PUF and a NAF. The DLL usage number shall be decremented by Windows but the DLL is not freed from the memory each time a PUF deregisters a NAF.

The following operations shall take place, in order to:

–	get the address of the PciDeregister function exported by the NAF;

–	call to this address to inform the NAF of the end of the association. The PCI_EXID is passed to the NAF by address;

–	free the DLL.

6.4.5	PciPutMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF. Parameters are provided in the same order as in the description of the PciGetMessage.

The following operations shall take place, in order to:

–	get the address of the PciPutMessage function exported by the NAF;

–	call this address to pass parameter to the NAF (including the address of the PCI_EXID).

6.4.6	PciGetMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF. Parameters are provided in the same order as in the description of the PciGetMessage. Buffers provided by the PUF are directly used by the NAF.

The following operations shall take place, in order to:

–	get the address of the PciGetMessage function exported by the NAF;

–	call this address to pass parameter to the NAF (including the address of the PCI_EXID).

�6.4.7	PciSetSignal

This function allows a PUF to provide a direct information mechanism to be used by the NAF in case of incoming event. Two mutually exclusive mechanisms are offered under Windows:

–	a signal procedure mechanism;

–	a user message mechanism.

Once a mechanism is chosen by the PUF, the other is desactivated by the NAF for that particular PUF. Both mechanisms have to be supported by a NAF.

The first mechanism does not use the Signal parameter. This parameter shall be set to 0.

The second mechanism used the Signal parameter to identify the value associated with the WM_USER WINDOWS message. In that case, the Signal parameter must not be equal to 0.

6.4.7.1	Signal mechanism procedure

The routine address, provided by the PUF in the SignalProcedure parameter, is used directly by the NAF. It has to be made accessible to the NAF before it is provided by the PUF. The routine is called without any parameters.

In that case, the Signal parameter is not used but the parameter shall be passed to the NAF with the 0 value.

The stack used during the call to the SignalProcedure is not the PUF’s one. The SignalProcedure must be compiled without assuming SS equal to DS, i.e. as a DLL.

The NAF is allowed to call the PUF to reissue a signal call. To avoid big stack requirement, the NAF has to wait the return from the PUF signal procedure before reissuing the next signal call.

The PUF call back to the NAF during the signal procedure treatment is not allowed. The stack size is not guaranty when the NAF calls the PUF. Consequently, the stack requirements for the PUF treatment have to be as small as possible.

6.4.7.2	User message mechanism procedure

The Signal parameter contains a PUF value to be added to the WM_USER WINDOWS message constant. This message is sent to a PUF Window. The HANDLE for this Window is provided by the PUF in the low word of the SignalProcedure parameter of the PciSetSignal function. It must be a valid HANDLE WINDOW (HWND).

When the NAF issues the WM_USER + Signal message to the PUF, it uses a WINDOWS API PostMessage call. The PUF will find as third parameter (known as wParam) the type of the message received. In the fourth parameter (lParam), the PUF will find, as high word, the size of the Message associated to this message and as low word, the size of the Data associated. The call will look like:

	PostMessage(LOWORD(SignalProcedure),

	WM_USER+Signal,

	MessageID,

	(DWORD) (MessageSize << 16) | (DataSize));

As the PostMessage WINDOWS API is used, the PUF is allowed to call back the NAF during the message treatment.

This mechanism is simple to be implemented but an important constraint has to be point out:

–	Under WINDOWS, a PostMessage call can fail due to a lack of room available in the message queue. The PUF is in charge to treat fast enough messages to insure that no NAF message will be lost. The PUF cannot rely on a failed message to be reissued by the NAF.

6.4.7.3	Desactivation mechanism

To deactivate any signal mechanism the PciSetSignal function Signal and SignalProcedure parameters shall be set to NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the PUF.

�6.5	Availability of NAF’s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse action – extraction from the list of available NAFs – is described too. These actions are operating system specific.

6.5.1	Declaration action

First, the NAF may get the list of available PCI_HANDLEs to check if not already declared. The mechanism the NAF uses is the same as any PUF to get available NAF: PciGetHandles (see 6.4.1).

If not yet declared, the NAF includes its own PCI_HANDLE into the list.

PCI_BYTEARRAY	ownDLLName = "xxx";

PCI_BYTE		driverName[128];

WORD			index;

char			keyName[20];

/* Check if NAF not already installed */

for (index = 1; index <= 32; index++)

	{

	sprintf(keyName, "pciDriver%d", index);

	if (GetPrivateProfileString("DRIVERS",		/* Section name */

					keyName,		/* "pciDriver"+1..n */

					NULL,		/* No default needed */

					driverName,

					sizeof(driverName),

					"PCI.INI") > 0)

		{

		if (strcmpi(driverName, ownDLLName) == 0) return; /* NAFinstalled, OK return */

		}

	}

/* Search a free pciDriver position */

for (index = 1, index <= 32; index++)

	{

	sprintf(keyName, "pciDriver%d", index);

	if (GetPrivateProfileString("DRIVERS",		/* Section name */

					keyName,		/* "pciDriver"+1..n */

					NULL,		/* No default needed */

					driverName,

					sizeof(driverName),

					"PCI.INI") == 0)

		{

		/* Entry does not exist, add own NAF Driver name */

		WritePrivateProfileString("DRIVERS", keyName, ownDLLName, "PCI.INI");

		return;

		}

	}

The maximum number of NAF that can be registered is 32.

6.5.2	Extraction action

First, the NAF gets the list of available PCI_HANDLEs to check if it is declared. If so, the NAF removes its own PCI_HANDLE from the driver list in "PCI.INI".

PCI_BYTEARRAY	ownDLLName = "xxx";

PCI_BYTE		driverName[128];

WORD			index;

char			keyName[20];

�for (index = 1, index <= 32; index++)

	{

	sprintf(keyName, "pciDriver%d", index);

	if (GetPrivateProfileString("DRIVERS",		/* Section name */

					keyName,		/* "pciDriver"+1..n */

					NULL,		/* No default needed */

					driverName,

					sizeof(driverName),

					"PCI.INI") > 0)

		{

		/* Check for own name */

		if (strcmpi(driverName, ownDLLName) == 0)

			{

			/* Remove the name of the Driver */

			WritePrivateProfileString("DRIVERS", keyName, "", "PCI.INI");

			}

		}

	}

Appendix I��WINDOWS Operating System implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of view.

The following code shows a sample implementation of PUF exchange functions for the Windows environment. The sample is illustrated using C-language:

/* standard includes */

#include <windows.h>

/* Basic types */

typedef short		PCI_INTEGER;

typedef LPSTR		PCI_BYTEARRAY;

typedef LPSTR		PCI_HANDLE;

typedef struct {

	HINSTANCE		hDLLInstance;

	PCI_INTEGER		Exchange_Id;

	} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)();

/* PCI Structures */

struct pci_mpb {

	PCI_INTEGER MessageID;

	PCI_INTEGER MessageMaximumSize;

	PCI_INTEGER MessageActualUsedSize;

	PCI_INTEGER DataMaximumSize;

	PCI_INTEGER DataActualUsedSize;

	};

typedef struct pci_mpb PCI_MPB;

struct pci_register {						/* structure containing registering info */

	PCI_INTEGER PUFVersion;			/* optional: give PUF version */

	PCI_INTEGER PUFType;				/* optional: give PUF type */

	PCI_INTEGER MaxMsgSize;			/* return: max size of a message */

};

�struct pci_opsys {						/* structure containing registering info */

	int	DummyParameter;				/* No specific requirement for WINDOWS */

};

/*

 * PCI defines

 */

#define PCI_HANDLE_LENGTH				128	/* size of each handle in the buffer from�									 PciGetHandles */

#define PCI_E_SUCCESS					0

#define PCI_E_QUERY_ENTITY_NOT_AVAILABLE	128

#define PCI_E_INVALID_PCI_HANDLE			130

#define PCI_E_NAF_NOT_AVAILABLE			255

/*

//

/// PciGetHandles()

*/

PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

							PCI_HANDLE PCIHandles,

							PCI_INTEGER far * ActualHandles)

	{

	int				nafNumber;

	int				nafFound;

	int				size;

	char				keyName[20];

	PCI_BYTEARRAY		buffer;

	buffer = PCIHandles;

	for (nafNumber = 1, nafFound = 0; nafNumber <= MaxHandles; nafNumber++)

		{

		wsprintf(keyName, "pciDriver%d", nafNumber);

		size = GetPrivateProfileString("DRIVERS",		/* Section name*/

							keyName,		/* 'pciDriver'+1..n */

							NULL,		/* No default string needed */

							buffer,			/* Address where to put the result */

							128,			/* Maxi. size for the result */

							"PCI.INI");		/* INI FileName */

		if (size > 0)

			 {

			 nafFound++;	/* One more NAF found */

			 buffer += 128; /* Next location for a PCIHandle (128 octets fixed size) */

			 }

		}

	*ActualHandles = nafFound;

	}

/*

///

/// PciGetProperty()

*/

PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

							PCI_INTEGER MaximumSize,

							PCI_BYTEARRAY Property,

							PCI_INTEGER far * ActualSize)

	{

	PCI_INTEGER iReturnCode;

	HINSTANCE hDLLInstance;

	FARPROC lpfnGetProperty;

�	/* load the NAF’s DLL */

	hDLLInstance = LoadLibrary(PCIHandle);

	if (hDLLInstance < HINSTANCE_ERROR)

		return PCI_E_INVALID_PCI_HANDLE;		/* error in LoadLibrary */

	/* get the "PciGetProperty" entry point of the dll */

	lpfnGetProperty = GetProcAddress(hDLLInstance, "PciGetProperty");

	if (lpfnGetProperty == NULL)

		{

		FreeLibrary(hDLLInstance);

		return PCI_E_NAF_NOT_AVAILABLE;		/* error in GetProcAddress */

		}

	/* call the "PciGetProperty" entry point of the dll */

	iReturnCode = lpfnGetProperty(PCIHandle, MaximumSize, Property, ActualSize);

	/* free the DLL in any case */

	FreeLibrary(hDLLInstance);

	/* return with the DLL’s return code */

	return iReturnCode;

	}

/*

///

/// PciRegister()

///	The PCIOpSysInfo is kept for compatibility only

*/

PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,

						struct pci_register * PCIRegisterInfo,

						struct pci_opsys * PCIOpSysInfo,

						PCI_EXID far *ExID)

	{

	PCI_INTEGER iReturnCode;

	FARPROC lpfnRegister;

	HINSTANCE hDLLInstance;

	/* load the NAF’s DLL */

	hDLLInstance = LoadLibrary(PCIHandle);

	if (hDLLInstance < HINSTANCE_ERROR)

		return PCI_E_INVALID_PCI_HANDLE;		/* error in LoadLibrary */

	/* put the DLL instance in ExID */

	ExID->hDLLInstance = hDLLInstance;

	/* get the "PciRegister" entry point of the dll */

	lpfnRegister = GetProcAddress(hDLLInstance, "PciRegister");

	if (lpfnRegister == NULL)

		{ /* error in GetProcAddress */

		FreeLibrary(hDLLInstance);

		return PCI_E_NAF_NOT_AVAILABLE;

		}

	/* call the "PciRegister" entry point of the dll */

	iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);

	if (iReturnCode != 0)

		{ /* error in PciRegister: free the DLL */

		FreeLibrary(hDLLInstance);

		}

�	/* return with the DLL’s return code */

	return iReturnCode;

	}

/*

///

/// PciDeRegister()

*/

PCI_INTEGER far PASCAL PciDeregister(PCI_EXID far *ExID)

	{

	PCI_INTEGER iReturnCode;

	FARPROC lpfnDeregister;

	/* get the "PciDeregister" entry point of the dll */

	lpfnDeregister = GetProcAddress(ExID->hDLLInstance, "PciDeregister");

	if (lpfnDeregister == NULL)				 /* error in GetProcAddress */

		return PCI_E_NAF_NOT_AVAILABLE;

	/* call the "PciDeRegister" entry point of the dll */

	iReturnCode = lpfnDeregister(ExID);

	/* free the DLL in any case */

	FreeLibrary(ExID->hDLLInstance);

	/* return with the DLL’s return code */

	return iReturnCode;

	}

/*

///

/// PciPutMessage()

*/

PCI_INTEGER far PASCAL PciPutMessage(PCI_EXID far *ExID,

							PCI_MPB far *PCIMPB,

							PCI_BYTEARRAY Message,

							PCI_BYTEARRAY Data)

	{

	FARPROC lpfnPutMessage;

	/* get the "PciPutMessage" entry point of the dll */

	lpfnPutMessage = GetProcAddress(ExID->hDLLInstance, "PciPutMessage");

	if (lpfnPutMessage == NULL) /* error in GetProcAddress */

		return PCI_E_NAF_NOT_AVAILABLE;

	/* call the "PciPutMessage" entry point of the dll */

	/* and return with the DLL’s return code */

	return lpfnPutMessage(ExID, PCIMPB, Message, Data);

	}

/*

///

/// PciGetMessage()

*/

PCI_INTEGER far PASCAL PciGetMessage(PCI_EXID far *ExID,

							PCI_MPB far *PCIMPB,

							PCI_BYTEARRAY Message,

							PCI_BYTEARRAY Data)

�	{

	FARPROC lpfnGetMessage;

	/* get the "PciGetMessage" entry point of the dll */

	lpfnGetMessage = GetProcAddress(ExID->hDLLInstance, "PciGetMessage");

	if (lpfnGetMessage == NULL) /* error in GetProcAddress */

		return PCI_E_NAF_NOT_AVAILABLE;

	/* call the "PciGetMessage" entry point of the dll */

	/* and return with the DLL’s return code */

	return lpfnGetMessage(ExID, PCIMPB, Message, Data);

	}

/*

///

/// PciSetSignal()

*/

PCI_INTEGER far PASCAL PciSetSignal(PCI_EXID far *ExID,

							PCI_INTEGER Signal,

							PCI_PROCEDURE SignalProcedure)

	{

	FARPROC lpfnSetSignal;

	/* get the "PciSetSignal" entry point of the dll */

	lpfnSetSignal = GetProcAddress(ExID->hDLLInstance, "PciSetSignal");

	if (lpfnSetSignal == NULL) /* error in GetProcAddress */

		return PCI_E_NAF_NOT_AVAILABLE;

	/* call the "PciSetSignal" entry point of the dll */

	/* and return with the DLL’s return code */

	return lpfnSetSignal(ExID, Signal, SignalProcedure);

	}

�

CONTENTS

PART 9

Page

Summary		325

Introduction		325

1	Scope		326

2	References		326

3	Definitions		326

4	Abbreviations		326

5	Reader's guidance		326

5.1	Reader's guide		326

5.2	How to use this part		327

6	UNIX operating system specific implementation		327

6.1	Introduction		327

6.2	Implementation of basic types		328

6.3	Parameter passing conventions		328

6.4	Definition of types, constants and function-prototypes		328

6.5	Adaptation to the STREAMS kernel mechanism		329

6.6	Description of functions		332

6.7	Availability of NAF's PCI_HANDLE		337

Appendix I – UNIX operating system implementation coding samples		338

�PART 9: UNIX EXCHANGE MECHANISM

Summary

This part of the multi-part specification defines all details of the operating system binding for a UNIX™ environment (a general presentation of the binding mechanism can be found in Part 2).

Introduction

The number of different Integrated Services Digital Network (ISDN) programming interfaces used by terminal equipment has hindered the development of applications using ISDN which, in turn, has proved a constraint to the usage of ISDN on modern terminal equipment.

This specification defines the ITU-T ISDN Application Programming Interface (API), called ISDN Programming Communication Interface (PCI). The ISDN-PCI is an application interface for accessing and administering ISDN.

It has been defined in order to provide a standard for terminal equipment providers that makes possible the portability of applications that use the ISDN-PCI across a range of terminal equipment based on different operating systems.

The ISDN-PCI has been defined with the Application Developer in mind and, where possible, eliminates the need for a detailed knowledge of ISDN. It has also been defined in such a manner that future ISDN extensions will not affect the operation of existing applications.

�1	Scope

This part specifies the Integrated Services Digital Network Programming Communication Interface (ISDN-PCI) exchange mechanism for the UNIX operating system. It forms a part of the specification on ISDN-PCI.

It describes the way a PUF or a NAF as described in Part 2: "Basic services", should dialogue, exchange messages and parameters to make ISDN connection.

Further specifications specify the method of testing and detailled application specific requirements to determine conformance based on this part.

2	References

[1]	Part 1, General architecture.

[2]	Part 2, Basic services.

3	Definitions

This part defines the following terms:

3.1	exchange function�: PUF functionality realising the exchange mechanism.�

3.2	exchange mechanism�: Means provided for the PUF to interchange messages with the NAF.�

3.3	ISDN programming communication interface (ISDN-PCI)�: Network (ISDN) oriented software interface providing access provisions for programming network signalling and user data exchange.�

3.4	message�: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).�

3.5	network access facility (NAF)�: Functional unit located between the ISDN-PCI and the network related layers.�

3.6	PCI User Facility (PUF)�: Functional unit using the ISDN-PCI to access a NAF. In fact, the local application using the interface.�

4	Abbreviations

This part uses the following abbreviations:

	API	Application Programming Interface�

	ISDN	Integrated Services Digital Network�

	NAF	Network Access Facility�

	PCI	Programming Communication Interface�

	PciMPB	Pci Message Parameter Block�

	PUF	Programming communication interface User Facility�

	UNIX	Stands for operating systems compatible to the UNIX operating system�

5	Reader’s guidance

5.1	Reader’s guide

This part is intended for software developers, implementors of applications and equipment manufacturers by providing them the exchange mechanism description and coding examples as described in [2] for the UNIX operating system. An understanding of the STREAMS concept is a help to get the details of the subsequent mechanism description.

�5.2	How to use this part

Readers who:

–	need a quick overview over the exchange mechanism in general should refer to Part 2: "Basic services" [2]. Other operating systems are described. The reader should consult Part 1: "General architecture" [1] to get information on other operating system availability. General description of the exchange mechanism for UNIX is located in 6.1;

–	intend to implement an application using this ISDN-PCI interface for UNIX should inspect clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. Coding examples are provided in Appendix I. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2];

–	intend to build an ISDN adapter card or equipment should also first read clauses 5 and 6. Clauses 3 and 4 provide useful information on the definitions of terms and abbreviations used. More detailed information regarding the NAF is contained in 6.5 and 6.6. Coding examples provided in Appendix I show how a PUF may access a NAF. To get information on parameters and return codes list and description, the reader should refer to Part 2: "Basic services" [2].

Table 1 gives a descriptive list showing the full contents of this part.

Table 1 – List of contents

Clause,�Appendix�Contains ...��Clause 1�... the scope of this part. This describes what this part covers��Clause 2�... references��Clause 3�... definitions of the terms used throughout this part��Clause 4�... definitions of the abbreviations used throughout this part��Clause 5�... gives an overview and reader's guidance��Clause 6�... operating system dependencies and implementation rules for UNIX��Appendix I�... sample coding in C-language illustrating operating system specific implementation of the exchange mechanism for UNIX��

6	UNIX operating system specific implementation

6.1	Introduction

The PCI exchange functions described in Part 2: "Basic services" [2] have to be mapped to appropriate functions supplied by the UNIX STREAMS kernel mechanism.

The binary compatible interface to a NAF running under the UNIX operating system shall be implemented using the STREAMS kernel mechanism.

Descriptions were made using C-language because it is the natural language in the UNIX environment.

�6.2	Implementation of basic types

The following table shows the mapping of the basic types of the exchange method to C-language types:

Basic type�Mapping and usage��PCI_INTEGER�Can be implemented as 2- or 4-byte signed integer, whatever is defined within the underlying UNIX system as system constant for the 'int' type��PCI_BYTEARRAY�Implemented as pointer to 'char' type��PCI_EXID�Implemented as 'int' type. Since the exchange method is implemented using STREAMS, the Exchange-ID has the same value and type as the UNIX file descriptor provided by the STREAMS kernel mechanism.��PCI_HANDLE�Implemented as pointer to 'char' type, in fact a UNIX character-string. The string shall contain the name of the STREAMS device the NAF is implemented in.��PCI_PROCEDURE�Implemented as address of a function returning 'void' type, as defined by UNIX signal () system call��

6.3	Parameter passing conventions

For parameter passing, the usual C-conventions apply:

–	Call values are either passed by value (e.g. PCI_INTEGER, PCI_EXID), or by use of a pointer (e.g. PCI_BYTEARRAY, PCI_HANDLE).

–	Return values are passed by giving a pointer for filling in the value (passing by reference).

Errors occurred inside the NAF driver are returned as positive integers (PCI_INTEGER). Their values are defined in [2]. As defined there, a value of 0 stands for "no error" (Success).

Errors occurred inside the PCI exchange functions should be returned as negative integers (PCI_INTEGER). Their values are not defined. They are NAF implementation dependent.

6.4	Definition of types, constants and function-prototypes

If alignment is necessary on the UNIX target system, the size of the int type is employed.

/*

 * Basic types

 */

typedef int		PCI_INTEGER;

typedef char *		PCI_BYTEARRAY;

typedef int		PCI_EXID;

typedef char *		PCI_HANDLE;

typedef void (*		PCI_PROCEDURE) ();

/*

 * Structures

 */

struct pci_mpb {

	PCI_INTEGER	MessageID;

	PCI_INTEGER	MessageMaximumSize;

	PCI_INTEGER	MessageActualUsedSize;

	PCI_INTEGER	DataMaximumSize;

	PCI_INTEGER	DataActualUsedSize;

};

�/*

 * Exchange functions prototypes

 */

PCI_INTEGER PciGetHandles (PCI_INTEGER		MaxHandles,

					PCI_BYTEARRAY		PCIHandles,

					PCI_INTEGER *		ActualHandles);

PCI_INTEGER PciGetProperty (PCI_HANDLE		PCIHandle,

					PCI_INTEGER		MaximumSize,

					PCI_BYTEARRAY		Property,

					PCI_INTEGER *		ActualSize);

PCI_INTEGER PciRegister (PCI_HANDLE		PCIHandle,

					PCI_INTEGER		PUFVersion,

					PCI_INTEGER		PUFType,

					PCI_EXID *			ExID,

					PCI_INTEGER *		MaxMsgSize);

PCI_INTEGER PciDeregister (PCI_EXID			ExID);

PCI_INTEGER PciPutMessage (PCI_EXID			ExID,

					struct pci_mpb *		PCIMPB,

					PCI_BYTEARRAY		Message,

					PCI_BYTEARRAY		Data);

PCI_INTEGER PciGetMessage (PCI_EXID			ExID,

					struct pci_mpb *		PCIMPB,

					PCI_BYTEARRAY		Message,

					PCI_BYTEARRAY		Data);

PCI_INTEGER PciSetSignal (PCI_EXID			ExID,

					PCI_INTEGER		Signal,

					PCI_PROCEDURE		SignalProcedure);

6.5	Adaptation to the STREAMS kernel mechanism

6.5.1	General

A NAF implemented into the UNIX kernel shall oppose its ISDN-PCI interface via the STREAMS kernel mechanism. For each implemented NAF one STREAMS access shall be provided, independent of the amount of ISDN accesses the NAF provides. Such a STREAMS access can in principle, if implemented by the NAF, be used by several PUFs. Furthermore, as a consequence of the UNIX architecture, one PUF can access several STREAMS and thus several NAFs simultaneously. NAFs shall be defined as CLONE Streams.

The UNIX STREAMS kernel mechanism provides two queues, a write queue and a read queue. Information sent by the exchange functions to the stream driver (downstream information) are placed into the write queue by a STREAMS component called the stream head. Stimulating the stream head to do so is achieved by issuing the STREAMS putmsg() system call.

The stream driver can access the information of the write queue, processes it and places resulting information into the read queue. The content of the read queue (upstream information) is available to the exchange functions by use of the STREAMS getmsg() system call.

6.5.2	Communication between PUF exchange functions and NAF stream driver

The communication between an exchange function and the NAF stream driver is carried out by the exchange function by means of getmsg() or putmsg() in the case of PciGetMessage() and PciPutMessage(), and ioctl() in the case of all other functions.

The information transported through this stream is called a STREAMS message. STREAMS messages should not be confused with the messages defined in the ISDN-PCI.

�The STREAMS mechanism divides the PCI message into two parts: a control part and a data part. For messages exchanged via PciGetMessage() and PciPutMessage(), the control part of the STREAMS message contains the PCI message and the data part will contain the data part of the PCI message. The NAF driver receives the lengths of the individual parts of the PCI message by means of the standard UNIX getmsg() and putmsg() mechanism.

For all other messages, the individual command is passed to the NAF driver in the ioc_cmd field of the struct iocblk structure. The data part associated with this command is passed to the NAF driver in the data blocks of the M_IOCTL message.

Definitions of terms:

mp							is of type mblkt_t * (see /usr/include/sys/stream.h)

struct iocblk						type defined in /usr/include/sys/stream.h

The NAF STREAMS driver can obtain the information necessary for its operation by using the following mechanisms:

1)	PCI Messages exchanged via PciPutMessage()

Information		Availability

Length of control part		mp->b_wptr - mp->b_rptr

Contents of control part		mp->b_rptr

Presence of a data part		mp->b_cont != NULL

Length of data part		msdgsize(mp)

Contents of data part		mp->b_cont->b_rptr

2)	PCI Messages exchanged via the ioctl() mechanism

Information		Availability

Requested function		((struct iocblk *)mp->b_rptr)->ioc_cmd

Length of control part		((struct iocblk *)mp->b_rptr)->ioc_count

Contents of control part		mp->b_cont->b_rptr

Room for returned data		mp->b_cont->b_rptr

		((struct iocblk *)mp->b_rptr)->ioc_rval

The requested function shall be defined as follows:

#define PCI_PROPERTY		(('Z' << 8) | 1)

#define PCI_REGISTER		(('Z' << 8) | 2)

#define PCI_DEREGISTER		(('Z' << 8) | 3)

#define PCI_SETSIGNAL		(('Z' << 8) | 4)

6.5.3	Special considerations

Several NAF implementation aspects have to be considered by the PUF implementing the exchange functions:

–	The PUF grants the NAF the permission to put incoming PCI messages on the read-side queue, thereby using this queue for buffering. Flow control is acheived by the standard UNIX highwater-lowwater mark mechanism which allows the NAF STREAMS driver to handle flow control transparently on the driver level.

–	The size of a stream queue element is limited. A NAF stream driver shall be able to provide 4096 bytes as data part of the stream message on the PUF’s request, but it shall also guarantee this amount as the maximum delivered value. However, data block sizes of more than 4096 bytes can be supported if the stream is put into "message non-discard mode" [see streamio(7)]. Should a message with a data block size of more than 4096 bytes arrive at the stream head, a call to PciGetMessage will return the first 4096 bytes of the data block and successive calls to PciGetMessage will return the additional data blocks. Each of the additional calls to PciGetMessage will return a message whose control part length will be zero.

–	Only the UNIX SIGPOLL signal shall be issued by the NAF implementation.

�6.6	Description of functions

This subclause describes the implementation of the PCI exchange functions using the UNIX STREAMS mechanism. The description of each function is divided into three parts:

1)	Function body:	Function body description, including general description of the function

		behaviour

2)	STREAMS putmsg():	Structure set-up for call to putmsg()

3)	STREAMS getmsg():	Structure contents after return from getmsg()

The prototypes of putmsg () and getmsg () functions are:

int putmsg (fd, ctlptr, dataptr, flags)

	int fd;					/* File descriptor	*/

	struct strbuf *ctlptr;			/* Control part of the message	*/

	struct strbuf *dataptr;		/* Data part of the message	*/

	int flags;				/* Message priority.	*/

int getmsg (fd, ctlptr, dataptr, flags)

	int fd;					/* File descriptor	*/

	struct strbuf *ctlptr;			/* Control part of the message	*/

	struct strbuf *dataptr;		/* Data part of the message	*/

	int *flags;				/* Message priority.	*/

with

struct strbuf	{

	int maxlen				/* Maximum buffer length	*/

	int len					/* Length of data	*/

	char *buf				/* Pointer to buffer	*/

	}

Alternatively, for PCI exchange functions which use the ioctl() mechanism, the description of each function is divided into 2 parts:

1)	Function body:		Function body description, including general description of the function behaviour

2)	ioctl():				Structure set-up for call to ioctl()

The prototype of ioctl () is:

int ioctl (fd, command, arg)

	int fd;				/* File descriptor				*/

	int command;			/* ioctl command as defined in streamio(7)	*/

	char *arg;			/* command specific argument			*/

Whenever command is I_STR, arg should point to a structure of type strioctl, where strioctl is defined as:

struct strioctl	{

	int ic_cmd;			/* User-defined command 		*/

	int ic_timeout;		/* Timeout for command		*/

	int ic_len;			/* Length of data part to follow		*/

	char *ic_dp;			/* Command-specific arguments		*/

	}

6.6.1	PciGetHandles

Function body:

PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,

							PCI_BYTEARRAY PCIHandles,

							PCI_INTEGER *ActualHandles)

{

...

}

MaxHandle contains the maximum number of PCI_HANDLE the PCIHandles parameter can receive. On return, ActualHandles, which is a pointer to an integer value, will contain the number of PCI_HANDLE copied into the PCIHandles parameter.

�This function shall:

–	examine the directory /etc/pcidd to get the number and the PCI_HANDLEs available;

–	update the PCIHandles and the ActualHandles parameters;

–	return appropriate error code.

6.6.2	PciGetProperty

Function body:

PCI_INTEGER PciGetProperty	(PCI_HANDLE		PCIHandle,

						PCI_INTEGER		MaximumSize,

						PCI_BYTEARRAY	NAFProperty,

						PCI_INTEGER		*ActualSize)

{

	struct strioctl		strioctl;

	extern int		errno;

	int			filedes;

}

PCIHandle points to the path name of the STREAMS device, MaximumSize is the size of the buffer to hold the properties. NAFProperty is the pointer to this buffer and ActualSize is a pointer to an integer value receiving the actual size of the property information in the NAF on return.

This function shall:

–	open the STREAMS device using PCIHandle;

–	issue the ioctl() call;

–	retrieve the value of ActualSize and the error code;

–	close the STREAMS device;

–	return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_PROPERTY, the ic_len component shall be set to MaximumSize and the ic_dp component shall be set to point to the NAFProperty buffer.

Upon return from the ioctl() call, the return value shall be checked against 0 which will indicate success. Any other return value indicates an error condition, which indicates that the errno variable contains the error condition. The ic_len component of the strioctl structure contains the number of bytes returned by the ioctl call. The ic_dp component points to the property returned.

NOTE – The size returned is always the size of the property inside the NAF.

strioctl.ic_cmd		= PCI_PROPERTY;

strioctl.ic_timeout 	= 0;

strioctl.ic_len		= MaximumSize;

strioctl.ic_dp		= (char *) NAFProperty;

if (ioctl (filedes, I_STR, &strioctl) == 0) {

	*ActualSize = strioctl.ic_len;

	return 0;

}

else {

	*ActualSize = 0;

	return errno;

}

�6.6.3	PciRegister

Function body:

PCI_INTEGER PciRegister	(PCI_HANDLE		PCIHandle,

				PCI_INTEGER		PUFVersion,

				PCI_INTEGER		PUFType,

				PCI_EXID			*ExID,

				PCI_INTEGER		*MaxMsgSize)

{

	struct strioctl			strioctl;

	struct pci_register_t		pci_register;

	extern int			errno;

}

PCIHandle points to the path name of the STREAMS device. PUFVersion and PUFType are integers and set as indicated in [2]. ExID is a pointer to an integer receiving the returned Exchange-ID, which shall be equal to the UNIX file descriptor returned by the open() system call. MaxMsgSize is an integer receiving the message size of the NAF as described in [2].

This function shall:

–	open the STREAMS device using PCIHandle;

–	issue the ioctl() call;

–	retrieve the return values from the pci_control structure;

–	leave the STREAMS device open and assign file descriptor of open() call to ExID;

–	return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_REGISTER, the ic_len component shall be set to the size of the pci_register structure and the ic_dp component shall be set to point to the pci_register structure which is set up with the values of PUFVersion and PUFType. Upon return from the ioctl() call, the return value shall be checked against –1 which will indicate an error condition. The external variable errno will be set to indicate the specific error condition. Any other return value indicates success, and the return value of the ioctl call shall indicate the maximum PCI message size the NAF supports.

struct pci_register_t {

	int			puf_version;

	int			puf_type;

} pci_register;

pci_register.puf_version	= PUFVersion;

pci_register.puf_type		= PUFType;

strioctl.ic_cmd			= PCI_REGISTER;

strioctl.ic_timeout		= 0;

strioctl.ic_len			= sizeof (pci_register);

strioctl.ic_dp			= (char *) &pci_register;

if ((*ExID = open (PCI_HANDLE, O_RDWR)) == –1) {

	*ExID = 0;

	return <cant_open_device : errno provides more information>;

}

if ((*MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0) {

	*MaxMsgSize = 0;

	return errno;

}

else {

	return 0;

}

�6.6.4	PciDeregister

Function body:

PCI_INTEGER PciDeregister		(PCI_EXID		 *ExID)

{

	struct strioctl			strioctl;

	extern int			errno;

}

ExID identifies the open STREAMS device. It is identical with the file descriptor returned by the open() system call. This function shall:

–	issue the ioctl() call;

–	retrieve the error return code;

–	close the STREAMS device;

–	return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_DEREGISTER, the ic_len component shall be set to zero; the ic_dp component shall be set to NULL. Upon return from the ioctl() call, the return value shall be checked against –1 which will indicate an error condition. The external variable errno will be set to indicate the specific error condition. Any other return value indicates success.

strioctl.ic_cmd		= PCI_DEREGISTER;

strioctl.ic_timeout 		= 0;

strioctl.ic_len			= 0;

strioctl.ic_dp			= (char *) NULL;

if (ioctl (*ExID, I_STR, &strioctl) == –1) {

	return errno;

}

else {

	close (*ExID);

	return 0;

}

6.6.5	PciPutMessage

Function body:

PCI_INTEGER PciPutMessage(PCI_EXID			ExID,

				struct pci_mpb		*PCIMPB,

				PCI_BYTEARRAY		Message,

				PCI_BYTEARRAY		Data)

{

	struct strbuf ctlbuf;	/* stream message control part pointer */

	struct strbuf databuf;	/* stream message data part pointer */

}	

ExID identifies the STREAMS device. PCI-MPB is a pointer to the PCI Message Parameter Block. Message and Data are the part of the PCI message to be sent to the NAF driver. Either Message or Data might be optional. In this case they are specified as NULL. In order to be more efficient (see STREAMS putmsg hereafter), it is recommended that the PCI�MPB be stored contiguously before the Message, this allows to avoid a copy in memory.

This function shall:

–	prepare the ctlbuf and databuf structures;

–	issue the putmsg() call;

–	retrieve the error return;

–	return appropriate error code.

�STREAMS putmsg():

/* The general idea is to pass in ctlbuf a buffer containing the PCIMPB followed by the content of Message, and in databuf the content of Data */

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb))) {

	/*	There is a Message not NULL, and PCIMPB and Message are not contiguous in memory,

		Have to build a buffer where PCIMPB is followed by the Message content */

	char *buffer; /* pointer to a buffer, large enough to receive PCIMPB and the Message content */

	...

	/* Here a memory allocation process may take place */

	...

	memcpy (buffer, PCIMPB, sizeof(pci_mpb));

	memcpy ((buffer + sizeof(pci_mpb), Message, PCIMPB->MessageActualUsedSize);

	ctlbuf->buf		= buffer;

	ctlbuf->len		= PCIMPB->MessageActualUsedSize + sizeof(pci_mpb);

}

else {

	/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

	ctlbuf->buf		= PCIMPB;

	ctlbuf->len		= Message ? PCIMPB->MessageActualUsedSize + sizeof(pci_mpb) : sizeof(pci_mpb);

}

databuf->buf	= Data;

databuf->len	= Data ? PCIMPB->DataActualUsedSize : 0;

if (putmsg (ExID, &ctlbuf, &databuf, flags) != 0) {

	/* Error condition, errno will be set */

}

else {

	/* Operation OK 	*/

}

6.6.6	PciGetMessage

Function body:

PCI_INTEGER PciGetMessage(PCI_EXID		ExID,

					struct pci_mpb		*PCIMPB,

					PCI_BYTEARRAY	Message,

					PCI_BYTEARRAY	Data)

{

	struct strbuf		ctlbuf;		/* stream message control part pointer */

	struct strbuf 		databuf;	/* stream message data part pointer */

}

ExID identifies the STREAMS device. PCI-MPB is a pointer to the PCI Message Parameter Block. Message and Data are the part of the PCI message to be received from the NAF driver. Either Message or Data might be optional. In this case they are specified as NULL. In order to be more efficient (see STREAMS getmsg hereafter), it is recommended that the PCI-MPB be stored contiguously before the Message; this allows to avoid a copy in memory.

This function shall:

–	prepare the ctlbuf and databuf structures;

–	issue the getmsg () call;

–	retrieve the return values from the ctlbuf and databuf structures;

–	return appropriate error code.

�STREAMS getmsg():

/* The general idea is to pass in ctlbuf a buffer large enough for containing the PCI MPB followed by the content of Message, and in databuf the content of Data. The error code of the NAF is available in the errno variable. */

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb))) {

	/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

	have to reserve a buffer where PCIMPB can be followed by the Message content */

	char *buffer; /* pointer to a buffer, large enough to receive PCIMPB and the Message content */

	/* Here a memory allocation process may take place */

	ctlbuf->buf	= buffer;

}

else {

	/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

	ctlbuf->buf		= PCIMPB;

}

ctlbuf->maxlen		= Message ? PCIMPB->MessageMaximumSize + sizeof(pci_mpb):sizeof(pci_mpb);

databuf->buf		= Data;

databuf->maxlen	= Data ? PCIMPB->DataMaximumSize : 0;

if (getmsg (ExID, &ctlbuf, &databuf, flags) != 0) {

	/* Error condition, errno will be set */

	PCIMPB->c_error = errno;

}	

else {	/* Operation OK 	*/

	if (ctlbuf->len != –1 && ctlbuf->len >= sizeof(pci_mpb)) {

		/* Message, possibly of size 0 is present */	

		PCIMPB->MessageActualUsedSize 	= ctlbuf->len - sizeof(pci_mpb);

		if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb)))

			{

			/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

			a buffer where PCIMPB is followed by the Message content, has been used */

			memcpy (PCIMPB, buffer, sizeof(pci_mpb));

			memcpy (Message,(buffer + sizeof(pci_mpb)), (ctlbuf->len - sizeof(pci_mpb)));

		}

		else {

			/* the PCIMPB and the Message are contiguous in memory, no additional buffer used */

			Message = PCIMPB + sizeof(pci_mpb);

		}

	}

	else {

	/* No Message present or too small message: error at least PCIMPB should be there */

	}

if (databuf->len != –1) {

	/* Data block, possibly of size 0 is present */

	PCIMPB->DataActualUsedSize = databuf->len;

}

else {

	/* No Data present */

	PCIMPB->DataActualUsedSize = 0;

}

}

�6.6.7	PciSetSignal

Function body:

PCI_INTEGER	PciSetSignal(PCI_EXID		*ExID,

					PCI_INTEGER	Signal,

					PCI_PROCEDURE	SignalProcedure)

{

	extern int	errno;

}

ExID identifies the STREAMS device, Signal the UNIX signal number. SignalProcedure is the address of the signal handler ('C' function) inside of the PUF. Only the UNIX-SIGPOLL signal shall be issued by the NAF implementation. Consequently, any non-zero value in Signal shall turn on emission of UNIX-SIGPOLL signals, a zero value shall turn emission off.

The SignalProcedure defined by the PUF shall reissue the signal via the signal() system call – see below. This mechanism is mandatory; otherwise, the next signal provided by the NAF shall kill the PUF.

More than one signal can be sent by a NAF to a PUF before the PUF accesses the NAF. An access to the NAF by the PUF during signal procedure treatment is not recommended.

This function shall:

–	issue the ioctl() call;

–	retrieve the error code;

–	register UNIX-SIGPOLL signalling with the stream head using: ioctl (..., I_SETSIG, S_MSG) system call;

–	register UNIX-SIGPOLL signalling with the operating system using: signal (SIGPOLL, SignalProcedure) system call;

–	return appropriate error code.

STREAMS ioctl():

The function shall check the Signal parameter and shall, if Signal equals zero, set up the Signal_options variable to zero to turn off signalling. Furthermore, the signal function shall be deregistered by issuing the appropriate signal() call.

If Signal is non-zero, Signal_options shall be set to enable SIGPOLL signalling and any other options mandated by the implementation [see sigaction()]. Furthermore, the signal function shall be registered using the signal() system call.

if (Signal == 0) {

	Signal_options = 0;

	if (ioctl (ExID, I_SETSIG, &Signal_options) == –1)

		return errno;

	signal (SIGPOLL, SIG_DFL);

	return 0;

}

else {

	Signal_options = <SETSIG options>

	if (ioctl (ExID, I_SETSIG, &Signal_options) == –1)

		return errno;

	signal (SIGPOLL, SignalProcedure);

	return 0;

}

6.7	Availability of NAF’s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse action – extraction from the list of available NAFs – is described too. These actions are operating system specific.

�6.7.1	Declaration action

During the installation script of the STREAM driver, the directory /etc/pcidd is updated by a dummy file which is the name of the new NAF. The installation script may check availability of the NAF before the creation of the new dummy file.

6.7.2	Extraction action

During the deinstallation script of the STREAM driver, the directory /etc/pcidd is updated by removing the dummy file name of the NAF.

Appendix I��UNIX operating system implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of view.

The PciGetHandles function call is not presented.

/* Include files and basic definitions */

#include	<stddef.h>

#include	<fcntl.h>

#include	<signal.h>

#include	<stropts.h>

#include	<errno.h>

#include	<stdlib.h>

#define ERROR 	(–1)	/* Error value */

#define Success		(0)	/* Success value */

/* Basic types */

typedef int			PCI_INTEGER;

typedef char *			PCI_BYTEARRAY;

typedef int			PCI_EXID;

typedef char *			PCI_HANDLE;

typedef void			(* PCI_PROCEDURE)();

/* Structures */

struct pci_mpb {

	PCI_INTEGER	MessageID;

	PCI_INTEGER	MessageMaximumSize;

	PCI_INTEGER	MessageActualUsedSize;

	PCI_INTEGER	DataMaximumSize;

	PCI_INTEGER	DataActualUsedSize;

};

struct pci_register {					/* structure containing registering info */

	PCI_INTEGER PUFVersion;		/* optional: give PUF version */

	PCI_INTEGER PUFType;			/* optional: give PUF type */

	PCI_INTEGER MaxMsgSize;		/* return: max size of a message */

};

struct pci_opsys {					/* structure containing registering info */

	int	DummyParameter;			/* No specific requirement for WINDOWS */

};

�/* Function definitions */

#define PCI_PROPERTY				(('Z' << 8) | 1)

#define PCI_REGISTER				(('Z' << 8) | 2)

#define PCI_DEREGISTER				(('Z' << 8) | 3)

#define PCI_SETSIGNAL				(('Z' << 8) | 4)

/***

 *	PciGetProperty function

 */

PCI_INTEGER PciGetProperty (PCIHandle, MaximumSize, NAFProperty, ActualSize)

	PCI_HANDLE PCIHandle;				/* char *		*/

	PCI_INTEGER MaximumSize;			/* int			*/

	PCI_BYTEARRAY NAFProperty			/* char *		*/

	PCI_INTEGER * ActualSize;			/* int *		*/

{

register int filedes;			/* filedescriptor */

struct strioctl	strioct;			/* stream message control part pointer */

ActualSize = ERROR;			/ preset with error value */

if ((filedes = open (PCIHandle, O_RDWR)) < Success)

	return ERROR;

strioct.ic_cmd			= PCI_PROPERTY;

strioct.ic_timeout 		= 0;

strioct.ic_len			= MaximumSize;

strioct.ic_dp			= (char *) NAFProperty;

if (ioctl (filedes, I_STR, &strioct) == 0) {

	*ActualSize = strioct.ic_len;

	close (filedes);

	return 0;

	}

else

	{

	*ActualSize = 0;

	close (filedes);

	return errno;

	}

}

/***

 *	PciRegister function

 */

PCI_INTEGER PciRegister (PCIHandle, pci_register, pcidummy, ExID)

	PCI_HANDLE	PCIHandle;		/* char * */

	struct pci_register	pciregister;

	struct pci_opsys	pcidummy;

	PCI_EXID *		ExID;			/* int * */

{

struct strioctl	strioctl;

struct pci_register_t {

	int			puf_version;

	int			puf_type;

} pci_reg;

pci_reg.puf_version		= pciregister.PUFVersion;

pci_reg.puf_type		= pciregister.PUFType;

�strioctl.ic_cmd			= PCI_REGISTER;

strioctl.ic_timeout		= 0;

strioctl.ic_len			= sizeof (pci_reg);

strioctl.ic_dp			= (char *) &pci_reg;

if ((*ExID = open (PCIHandle, O_RDWR)) == –1)

	{

	*ExID = 0;

	return errno;

	}

if ((pciregister.MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0)

	{

	pciregister.MaxMsgSize = 0;

	return errno;

	}

else

	{

	return 0;

	}

}

/***

 *	PciDeregister function

 */

PCI_INTEGER PciDeregister (ExID)

	PCI_EXID ExID;	/* int		*/

{

struct strioctl	strioctl;

strioctl.ic_cmd			= PCI_DEREGISTER;

strioctl.ic_timeout		= 0;

strioctl.ic_len			= 0;

strioctl.ic_dp			= (char *) NULL;

if (ioctl (ExID, I_STR, &strioctl) == –1)

	{

	return errno;

	}

else

	{

	close (ExID);

	return 0;

	}

}

/***

 *	PciPutMessage function

 */

PCI_INTEGER PciPutMessage (ExID, PCIMPB, Message, Data)

	PCI_EXID ExID;			/* int */

	struct pci_mpb * PCIMPB;

	PCI_BYTEARRAY Message;	/* char * */

	PCI_BYTEARRAY Data		/* char * */

{

struct strbuf ctlbuf;

struct strbuf databuf;

char *buffer = NULL; /* pointer to a buffer, large enough to receive PCIMPB and Message contents */

int nErr;

�if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

	{

	/* there is a Message not NULL, and PCIMPB and Message are not contiguous in memory,

	Have to build a buffer where PCIMPB is followed by the Message content */

	/* Here a memory allocation process may take place */

	buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageActualUsedSize));

	memcpy (buffer, PCIMPB, sizeof(struct pci_mpb));

	memcpy (buffer + sizeof(struct pci_mpb), Message, PCIMPB->MessageActualUsedSize);

	ctlbuf.buf = buffer;

	ctlbuf.len = PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb);

}

else

	{

	/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

	ctlbuf.buf = (char *)PCIMPB;

	ctlbuf.len = Message ? PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb): sizeof(struct pci_mpb);

	}

databuf.buf	= Data;

databuf.len	= Data ? PCIMPB->DataActualUsedSize: 0;

if (putmsg (ExID, &ctlbuf, &databuf, 0) != 0)

	nErr = errno;		/* errno contents the error code */

	}

else

	{

	nErr = 0;

	}

if (buffer != NULL) free(buffer);

return nErr;

}

/***

 *	PciGetMessage function

 */

PCI_INTEGER PciGetMessage (ExID, PCIMPB, Message, Data)

	PCI_EXID ExID;			/* int		*/

	struct pci_mpb * PCIMPB;

	PCI_BYTEARRAY Message;	/* char *	*/

	PCI_BYTEARRAY Data;		/* char *	*/

{

struct strbuf ctlbuf;

int flags;

struct strbuf databuf;

char *buffer = NULL; /* pointer to a buffer, large enough to receive PCIMPB and the Message content */

int nErr = 0;

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

	{

	/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

	have to reserve a buffer where PCIMPB can be followed by the Message content */

	/* Here a memory allocation process may take place */

	buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageMaximumSize));

	ctlbuf.buf = buffer;

	}

�else {

	/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

	ctlbuf.buf = (char *)PCIMPB;

	}

ctlbuf.maxlen	= Message ? PCIMPB->MessageMaximumSize + sizeof(struct pci_mpb):sizeof(struct pci_mpb);

databuf.buf	= Data;

databuf.maxlen	= Data ? PCIMPB->DataMaximumSize : 0;

if (getmsg (ExID, &ctlbuf, &databuf, &flags) != 0)

	{

	/* Error condition, errno will be set 	*/

	nErr = errno;

}else {

	/* Operation OK 	*/

	if (ctlbuf.len != –1 && ctlbuf.len >= sizeof(struct pci_mpb)) {

		/* Message, possibly of size 0 is present */

		PCIMPB->MessageActualUsedSize 	= ctlbuf.len - sizeof(struct pci_mpb);

		if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

			{

			/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

			a buffer where PCIMPB can be followed by the Message content, has been used */

			memcpy (PCIMPB, buffer, sizeof(struct pci_mpb));

			memcpy (Message,(buffer + sizeof(struct pci_mpb)), (ctlbuf.len - sizeof(struct pci_mpb)));

			}

		else

			{

			/* PCIMPB and Message are contiguous in memory, no more buffer used */

			Message = (char *) (PCIMPB + sizeof(struct pci_mpb));

			}

	}else	{

		/* No Message present or too small message: error at least PCIMPB should be there */

		PCIMPB->MessageID = 0;

		PCIMPB->MessageActualUsedSize = 0;

		}

if (databuf.len != –1)

	{

	/* Data block, possibly of size 0 is present */

	PCIMPB->DataActualUsedSize 	= databuf.len;

	}

else	

	{

	/* No Data present */

	PCIMPB->DataActualUsedSize = 0;

	}

}

if (buffer != NULL) free(buffer);

return nErr;

}

�/***

 *	PciSetSignal function

 */

PCI_INTEGER PciSetSignal (ExID, Signal, SignalProcedure)

PCI_EXID ExID;				/* int			*/

PCI_INTEGER Signal;				/* int			*/

PCI_PROCEDURE SignalProcedure;		/* void (*) ()		*/

{

int Signal_options;

if (Signal == 0)

	{

	Signal_options = 0;

	if (ioctl (ExID, I_SETSIG, &Signal_options) == –1)

		return errno;

	signal (SIGPOLL, SIG_DFL);

	return 0;

	}

else	

	{

	Signal_options = S_MSG;

	if (ioctl (ExID, I_SETSIG, &Signal_options) == –1)

		return errno;

	signal (SIGPOLL, SignalProcedure);

	return 0;

	}

}

�PAGE�306�	�styleref head_foot�Recommendation T.200 (10/96)�

		�styleref head_foot�Recommendation T.200 (10/96)�	�PAGE�285�

�PAGE�312�	�styleref head_foot�Recommendation T.200 (10/96)�

		�styleref head_foot�Recommendation T.200 (10/96)�	�PAGE�307�

		�styleref head_foot�Recommendation T.200 (10/96)�	�PAGE�311�

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.1	exchange function

�PAGE \# "'Page: '#'�'" �Page: 288���D: PUF functionality realizing the exchange mechanism.

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.2	exchange mechanism

�PAGE \# "'Page: '#'�'" �Page: 288���D: Means provided for the PUF to interchange messages with the NAF.

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.3	ISDN programming communication interface (ISDN-PCI)

�PAGE \# "'Page: '#'�'" �Page: 288���D: Network (ISDN) oriented software interface providing access provisions for programming network signalling and user data exchange.

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.4	message

�PAGE \# "'Page: '#'�'" �Page: 288���D: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.5	network access facility (NAF)

�PAGE \# "'Page: '#'�'" �Page: 288���D: Functional unit located between the ISDN-PCI and the network related layers.

�PAGE \# "'Page: '#'�'" �Page: 288���T: 3.6	PCI user facility (PUF)

�PAGE \# "'Page: '#'�'" �Page: 288���D: Functional unit using the ISDN-PCI to access a NAF. In fact, the local application using the interface.

�PAGE \# "'Page: '#'�'" �Page: 288���A: API	Application Programming Interface

�PAGE \# "'Page: '#'�'" �Page: 288���A: DOS	stands for operating systems compatible to the MS-DOS operating system

�PAGE \# "'Page: '#'�'" �Page: 288���A: ISDN	Integrated Services Digital Network

�PAGE \# "'Page: '#'�'" �Page: 288���A: MS-DOS	Trade Mark of Microsoft Corporation, INC

�PAGE \# "'Page: '#'�'" �Page: 288���A: NAF	Network Access Facility

�PAGE \# "'Page: '#'�'" �Page: 288���A: PCI	Programming Communication Interface

�PAGE \# "'Page: '#'�'" �Page: 288���A: PciMPB	Pci Message Parameter Block

�PAGE \# "'Page: '#'�'" �Page: 288���A: PUF	Programming communication interface User Facility

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.1	exchange function

�PAGE \# "'Page: '#'�'" �Page: 310���D: PUF functionality realizing the exchange mechanism.

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.2	exchange mechanism

�PAGE \# "'Page: '#'�'" �Page: 310���D: Means provided for the PUF to interchange messages with the NAF.

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.3	ISDN programming communication interface (ISDN-PCI)

�PAGE \# "'Page: '#'�'" �Page: 310���D: ISDN oriented software interface providing access provisions for programming network signalling and user data exchange.

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.4	message

�PAGE \# "'Page: '#'�'" �Page: 310���D: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.5	network access facility (NAF)

�PAGE \# "'Page: '#'�'" �Page: 310���D: Functional unit located between the ISDN-PCI and the network related layers.

�PAGE \# "'Page: '#'�'" �Page: 310���T: 3.6	PCI user facility (PUF)

�PAGE \# "'Page: '#'�'" �Page: 310���D: Functional unit using the ISDN-PCI to access a NAF. E.g. the local application using the interface.

�PAGE \# "'Page: '#'�'" �Page: 310���A: API	Application Programming Interface

�PAGE \# "'Page: '#'�'" �Page: 310���A: ISDN	Integrated Services Digital Network

�PAGE \# "'Page: '#'�'" �Page: 310���A: NAF	 Network Access Facility

�PAGE \# "'Page: '#'�'" �Page: 310���A: PCI	Programming Communication Interface

�PAGE \# "'Page: '#'�'" �Page: 310���A: PciMPB	Pci Message Parameter Block

�PAGE \# "'Page: '#'�'" �Page: 310���A: PUF	Programming communication interface User Facility

�PAGE \# "'Page: '#'�'" �Page: 310���A: WINDOWS	Stands for the Windows TM Operating Systems based on version 3.0. Windows is Trade Mark of Microsoft Corporation, Inc.

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.1	exchange function

�PAGE \# "'Page: '#'�'" �Page: 326���D: PUF functionality realising the exchange mechanism.

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.2	exchange mechanism

�PAGE \# "'Page: '#'�'" �Page: 326���D: Means provided for the PUF to interchange messages with the NAF.

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.3	ISDN programming communication interface (ISDN-PCI)

�PAGE \# "'Page: '#'�'" �Page: 326���D: Network (ISDN) oriented software interface providing access provisions for programming network signalling and user data exchange.

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.4	message

�PAGE \# "'Page: '#'�'" �Page: 326���D: Unit of information transferred through the interface between the Network Access Facility (NAF) and the PCI User Facility (PUF).

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.5	network access facility (NAF)

�PAGE \# "'Page: '#'�'" �Page: 326���D: Functional unit located between the ISDN-PCI and the network related layers.

�PAGE \# "'Page: '#'�'" �Page: 326���T: 3.6	PCI User Facility (PUF)

�PAGE \# "'Page: '#'�'" �Page: 326���D: Functional unit using the ISDN-PCI to access a NAF. In fact, the local application using the interface.

�PAGE \# "'Page: '#'�'" �Page: 326���A: API	Application Programming Interface

�PAGE \# "'Page: '#'�'" �Page: 326���A: ISDN	Integrated Services Digital Network

�PAGE \# "'Page: '#'�'" �Page: 326���A: NAF	Network Access Facility

�PAGE \# "'Page: '#'�'" �Page: 326���A: PCI	Programming Communication Interface

�PAGE \# "'Page: '#'�'" �Page: 326���A: PciMPB	Pci Message Parameter Block

�PAGE \# "'Page: '#'�'" �Page: 326���A: PUF	Programming communication interface User Facility

�PAGE \# "'Page: '#'�'" �Page: 326���A: UNIX	Stands for operating systems compatible to the UNIX operating system

