
Cookbook

20th October 2003

(DRAFT version 0.45)

Copyright Jill Gemmill et al 2003
This work is the intellectual property of the authors. Permission is granted

for this material to be shared for non-commercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced materials and
notice is given that the copying is by permission of the authors. To disseminate
otherwise or to republish requires written permission from the editor.

Abstract

The ViDeNet Video Middleware Cookbook provides its audience with
a good understanding of the theory and use of middleware for videocon-
ferencing and voice over IP (VoIP). The focus is understanding the new
ITU-T standard, “H.350 : Directory Services Architecture for Multime-
dia Conferencing”. The new H.350 standard describes a directory services
architecture for multimedia conferencing using LDAP. Standardized direc-
tory services can support association of persons with endpoints, searchable
white pages, and clickable dialing. The cookbook explains how a standard-
ized LDAP schema called ”commObject” (communications Object class)
can be used to represent endpoints on the network and to associate those
endpoints with users. Design and implementation considerations for the
inter-relation of video and voice-specific directories, enterprise directories,
call servers and endpoints are also discussed.

1 Acknowledgements

Video Middleware Cookbook Editors:

• Jill Gemmill, University of Alabama at Birmingham, Principle Investiga-
tor

• Jason L. W. Lynn, University of Alabama at Birmingham, Testbed Man-
ager

Video Middleware Cookbook Authors (in alphabetical order):

• Nadim El-Khoury, University of North Carolina at Chapel Hill

1

http://www.itu.int/ITU-T/
http://middleware.internet2.edu/video/docs/H.350/
http://middleware.internet2.edu/video/docs/H.350/
mailto:jgemmill@uab.edu
mailto:jlwlynn@uab.edu
file:nadim_elkhoury@unc.edu

• Jill Gemmill, University of Alabama at Birmingham

• Alisa F. Haggard, University of North Carolina at Chapel Hill

• Tyler Miller Johnson, University of North Carolina at Chapel Hill

• Jason L. W. Lynn, University of Alabama at Birmingham, Testbed Man-
ager

• John–Paul Robinson, University of Alabama at Birmingham

Video Middleware Cookbook Contributors (in alphabetical order):

• Samir Chatterjee, Claremont Graduate University, Co-Principle Investi-
gator

• Aditya Srinivasan, University of Alabama at Birmingham

• Henny Bekker, SURFNet, Directory Services

• Egon Verharen, SURFNet, Director of Innovation

• RADVISION

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0222710 to the University of Alabama at Birming-
ham. Additional support was provided by EPS-0096193, NSF ANI-0123937 via
SURA-2002-103 Subcontract. H.350 was introduced in NMI Release 2 of the
NSF Middleware Initiative as commObject, an NMI-EDIT component, in part
supported by ANI-0123937. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Additional support has been provided by the University Corporation for Ad-
vanced Internet Development (Internet2). We acknowledge and thank the sup-
port of all our colleagues at Internet2 VidMid working group. Special thanks to
Tom Barton, Michael Gettes, Bob Morgan, Sasha Ruditsky, and Art Vanden-
berg for their contributions to commObject, and to the Department of Physics
at UAB for providing some of the equipment used in the Testbed.

2 Introduction

2.1 Overview

The ViDeNet Video Middleware Cookbook provides its audience with a good
understanding of the theory and use of middleware for videoconferencing and
voice over IP (VoIP). The focus is understanding the new ITU-T standard,
“H.350 : Directory Services Architecture for Multimedia Conferencing” that
describes a directory services architecture for multimedia conferencing using
LDAP. Standardized directory services can support association of persons with

2

mailto:jgemmill@uab.edu
mailto:ahaggard@email.unc.edu
mailto:tyler_johnson@unc.edu
mailto:jlwlynn@uab.edu
mailto:jpr@uab.edu
mailto:samir.chatterjee@cgu.edu
mailto:sriad@uab.edu
mailto:Henny.Bekker@surfnet.nl
mailto:egon.varharen@surfnet.nl
http://www.fastlane.nsf.gov/servlet/showaward?award=0222710
http://www.ehr.nsf.gov/epscor/about/nuggets.cfm?Nuggets_ID=2
http://www.nsf-middleware.org/
http://www.nsf-middleware.org/
http://www.internet2.edu/
http://middleware.internet2.edu/video
http://www.itu.int/ITU-T/
http://middleware.internet2.edu/video/docs/H.350/

endpoints, searchable white pages, and clickable dialing. This cookbook explains
how a standardized LDAP schema called ”commObject” (communications Ob-
ject class) can be used to represent endpoints on the network and to associate
those endpoints with users. Design and implementation considerations for the
inter-relation of video and voice-specific directories, enterprise directories, call
servers and endpoints are also discussed.

Directory services can provide searchable white pages, automated configu-
ration of endpoints, association of persons with endpoints, and user authentica-
tion based on authoritative data sources. These functions can result in reliable
accounting and centralized endpoint management while improving the users’
ability to locate and correctly dial other multimedia users. This cookbook also
describes a way to represent endpoints on the network and to associate those
endpoints with users and discusses design and implementation considerations
for interrelating video-and-voice-specific directories, enterprise directories, call
servers and endpoints.

A generic super class, called commObject, is used to represent attributes
common to any video or voice protocol. The cookbook describes the formal
LDAP object class definitions and configuration files for commObject and its
subclasses h323Identity, sipIdentity, h320Identity, and genericIdentity. These
classes can be used to represent h.323 endpoints, SIP user agents, h.320 end-
points, and users reachable via non-standard videoconferencing systems such as
Access Grid and Virtual Rooms Videoconferencing System, respectively, in a
directory.

The commObject class is an abstraction of a video or voice over IP device.
The commObject class permits an endpoint (H.323 endpoint or SIP user agent or
other protocol endpoint) and all their aliases to be represented by a single entry
in a directory. Auxiliary classes can be derived from commObject to represent
specific protocols, such as h.323, h.235, or h.320. These subclasses are fully
described in the ITU-T H.350.X series of Recommendations. Multiple H.350.X
classes can be combined to represent endpoints that support more than one
protocol. For example, endpoints that support H.323, H.235 and H.320 would
include H.350, H.350.1, H.350.2, and H.350.3 in their LDAP representations.

There are two basic components in the architecture and they are used to re-
late a person directory entry to protocol specific information about their video
or voice over IP device and to also relate a device to its owner. The commURI
object is a class whose only purpose is to link a person or resource to a com-
mObject. By placing a commURI ’pointer’ in a person’s directory entry, that
person becomes associated with the particular targeted commObject.

Similarly, commObject contains a pointer, called commOwner, that points
to the person or resource that owns or is associated with the commObject. In
this way, people or resources can be associated with endpoints and endpoints
can be associated with the people who use them.

Many organizations and enterprises already have an authoritative directory
listing people associated with the enterprise. To support H.350, the only change
required in the enterprise directory is the addition of the simple object class com-
mURI (a labeled URI). commObject data may be instantiated in the same or in

3

http://www.accessgrid.org/
http://www.vrvs.org/

Figure 1: 2.1

entirely separate directories, thus allowing implementers flexibility in deploying
the architecture.

The Cookbook is organized as follows: PART 1 provides a summary of cur-
rent standards for videoconferencing and voice over IP protocols and reviews
common architectural deployments for systems adhering to those standard pro-
tocols. The H.350 Directory Services Architecture for Multimedia Conferencing
is introduced, accompanied by a summary of the LDAP directory standard and
review of authentication/security standards that are part of the H.323 and SIP
protocols. PART 2 of the Cookbook takes the reader through a discussion of
decision points that are part of deploying directory-enabled videoconferencing
architectures and provides step-by-step installation and configuration instruc-
tions for Sun iPlanet, OpenLDAP, and Microsoft Active Directory directory
servers. Each object class and attribute of the H.350 schema is explained, with
examples. PART 3 is intended primarily for software developers. Code samples
in several programming languages are provided as examples of how to use the
H.350 directory service in endpoints and callservers for configuration, lookup,
authentication and user authorization decisions.

2.2 Intended Audience

The intended audience for this cookbook consists of videoconferencing / voice
over IP software developers and system administrators. This manual will be es-
pecially useful to developers of videoconferencing endpoints, user agents, prox-
ies, gatekeepers, and gateways that are being designed or redesigned to function
with middleware. In addition, this cookbook is intended for administrators of
various kinds that perceive the need to implement a videoconferencing middle-
ware infrastructure. This manual will provide an overview for managers and
specifics for LDAP and videoconferencing administrators so that they may eas-
ily and painlessly implement videoconferencing middleware. With that said, the
stated intended audience is not meant to limit the reading population and we
welcome readers that have a general interest in this architecture.

The examples and configurations in this cookbook are derived from and
intended for higher education institutions, though one may easily translate the

4

examples and configurations for other institutions by leaving out any steps that
involve information specific to higher education.

This manual extends the ViDeNet architecture. ViDeNet is a testbed for the
exploration of issues associated with globally scalable video and voice over IP
deployments. ViDeNet provides experience leading to best practices and stan-
dardized operations achieved through consulation, collaboration and consensus.

3 Why commObject?

3.1 Problem Statement

The use of a common, authoritative data source for call server, endpoint, user,
authentication and white pages information is important in large scale multi-
media conferencing environments. By standardizing the LDAP schema used to
represent the underlying data, products from different system vendors can be
deployed together to create an overall application environment. For example, a
white pages search engine developed by one provider could serve directory infor-
mation to IP telephones produced by a second provider, with signaling managed
by a call server produced by yet a third provider. Each of these disparate sys-
tems can access the same underlying data source, reducing or eliminating the
need to coordinate separate management of each system. Management of this
data can be incorporated into existing customer management tools, providing
quick and flexible scaling up of applications.

Many technology providers have already incorporated LDAP into their prod-
ucts, but have had to do so without benefit of a standardized schema. H.350
is the first effort to standardize those representations. While URLs are already
standardized for several conferencing protocols, their representation in a direc-
tory is not. H.350 supports a standardized way for URLs to be searched and
located. This is a necessary step to support clickable dialing.

Management of endpoint configurations can be improved if the correct set-
tings are stored by the service provider in a location that is accessible to both
service provider and endpoint. LDAP provides a storage location that can be
accessed by both call server and endpoint; thus it is possible to use the direc-
tory for automated endpoint configuration, which is important for simplifying
operation and supporting user mobility.

3.2 commObject Design Goals

Large-scale deployments of IP video and voice services have demonstrated the
need for complementary directory services middleware. Service administrators
need call servers that are aware of enterprise directories to avoid duplication of
account management processes. Users need white pages to locate other users
with whom they wish to communicate. All of these processes should pull their
information from canonical data sources in order to reduce redundant adminis-
trative processes and ensure information accuracy. The following design criteria

5

were used to establish this architecture:

1. Enable endpoint information to be associated with people. Alternately,
enable endpoint information to be associated with resources such as con-
ference rooms or classrooms.

2. Enable online searchable ”white pages” where dialing information (e.g.
endpoint addresses) can be found, along with other ”traditional” directory
information about a user, such as name, address, telephone, email, etc.

3. Enable all endpoint information to be stored in a canonical data source
(the Directory), rather than local to the call server, to make use of au-
thoritative data sources and avoid unnecessary replication.

4. Support the creation of very large-scale distributed directories. These in-
clude white pages ”portals” that allow searching for users across multiple
institutional directories. In this application, each enterprise directory reg-
isters itself with (or is discovered by) a directory of directories that is
capable of searching across multiple LDAP directories.

5. Support multiple instances of endpoints per user or resource.

6. Represent endpoints that support more than one protocol, for example
endpoints that are both H.320 and H.323.

7. Store enough information about endpoint configuration so that correct
configuration settings can be documented to end users on a per-endpoint
basis, as a support tool, or loaded automatically into the endpoint.

8. Be extendable to allow implementation specific attributes to be included.

9. Be non-invasive to the enterprise directory, so that support for multimedia
conferencing can be added in a modular fashion without significant changes
to the enterprise directory.

The scope of H.350 does not include extensions of functionality to existing proto-
col definitions. H.350 merely represents existing protocol attributes. Exceptions
to this case occur only when functionality is implied by the directory itself, such
as the commPrivate attribute that flags a “do not publicly list” directory entry.

3.3 H.350 Origins

H.350 has its origins in the academic research networking community. The
Video Development Initiative (ViDe) has been working since 1998 to peer to-
gether video and voice over IP networks operated autonomously by various
universities. This peering created a test bed called ViDe.Net in order to explore
issues associated with the global deployment of video and voice over IP. To date
over 100 universities, national research networks, backbone networks, and cor-
porate networks peer together using H.323 in the test bed, creating an ’Internet
of video and voice over IP.’

6

http://www.vide.net/

Early on in the development of ViDe.Net it became apparent that a white
pages directory was a fundamentally important feature. The directory was
needed not only to lookup the name and dialing address of other users, but
also as an aid to configuration so that users could find their own address in-
formation and system administrators could contact users. Proprietary address
books offered by participating vendors were inadequate because they did not
include all the information required, were not portable across vendors, and were
not searchable or manageable outside of their internal environment. Clearly
there was a need for a standardized directory format.

As deployments grew larger, network managers grew services out of the test
bed environment and into production. Since commercially available call servers
typically featured internal databases of endpoints, the network manager found
he or she had to separately manage, generally by manual data entry, each user
of the service. This situation was observed to be one significant element keeping
deployment sizes small because the cost of deployment involved a significant
amount of labor to locate, verify, and store information about users and their
endpoints. Enterprises, such as higher education institutions, already had di-
rectories of users containing information from authoritative institutional sources
and that information was already managed by appropriate entities within the
enterprise. It became evident that in order to scale voice and video over IP up to
greater orders of magnitude, the multimedia conferencing environment should
leverage the existing directory infrastructure.

Internet2 and ViDe together recognized the need to standardize a directory
services architecture for video and voice over IP and jointly created the Video
Middleware Working Group (VidMid-VC) to accomplish that task. Working
together with experts in video and voice over IP protocols, as well as experts in
middleware, security and directory technologies, VidMid created the commOb-
ject architecture and submitted the architecture to ITU-T Study Group 16.
Study Group 16 received the architecture and decided to take it on as project
H.LDAP. Because OID assignments were critical to creating the document, the
document number H.350 was tentatively assigned to the project. H.350 was
ratified by the ITU-T as an international standard in August 2003.

3.4 The ViDeNet Middleware Test Bed

The commObject architecture has been adopted in the ViDe.Net test bed in
order to demonstrate that the concept is viable and to identify problems in the
architecture. You are invited to use the test bed as an aid to understanding
the H.350 architecture. The URL for the test bed is https://videnet.unc.edu/.,
where you can create both user accounts (people directory entries) and zone
administrator accounts (for managing entire networks). There is no charge for
using the test bed.

7

http://middleware.internet2.edu/video/
http://middleware.internet2.edu/video/
https://videnet.unc.edu/

3.4.1 White Pages

The ViDe.Net implementation of commObject is a self-contained demonstration
of the H.350 Directory services for Multimedia architecture. Figure 3.1 and
Figure 3.2 show the linked relationship between the people directory and the
commObject directory.

Figure 2: 3.1

Figure 3.1 shows a user entry in the people directory; the object class used
for the person entry is the IETF inetOrgPerson object class. A commURI exists
for each of the user’s endpoints. The commURIs are listed in the ’Endpoint’
section in the figure. Note that the label portion of the commURI is used to
create a friendly name for each endpoint, such as ’Home Office’. The words used
in the label can be assigned and changed by the user to provide a description of
each endpoint. Clicking on the commURI labeled ’Laptop’ brings up the actual
commObject information for that endpoint as show in Figure 3.2.

Figure 3: 3.2

8

Figure 3.2 shows the commObject information for the selected endpoint.
Note that the ’Owner’ is a link that refers back to the user associated with
this endpoint which is an H.323 videoconferencing device. H.323 information
is stored using the h323Identity object class as described in H.350.1. Note also
that these aliases are displayed in H.323 URL format so that clicking on the
address could cause a call to be established for any endpoint supporting that
functionality.

It is not necessary to have the people and commObject information displayed
on separate panels in a user interface. This was an implementation choice made
to graphically demonstrate the relationship between the two and to easily ac-
commodate large numbers of endpoints associated with individual users.

3.4.2 Network Management

The test bed also demonstrates the use of commObject to manage a network of
multimedia conferencing devices. Each network administrator has secure access
to the commObject data for their network. The administrator can manipu-
late this data and the subsequent changes are reflected in the directory. The
administrator never has to manage user information. In the test bed, user infor-
mation is managed directly by the user and, in an enterprise environment, user
information is managed by a separate and likely pre-existing user management
system.

Figure 4: 3.3

Figure 3.3 shows the choices available to a zone administrator. These choices
take advantage of information already present in the enterprise directory. In
particular, note that selecting ’Update, Remove an Associated Endpoint’ will
bring up the editing screen shown in Figure 3.4.

9

Figure 5: 3.4

In this example, the commObject information is displayed for editing by the
administrator, while the user information is displayed for information purposes
and is pulled from the enterprise directory.

4 Background Information

4.1 Videoconferencing and VoIP

4.1.1 Overview

Videoconferencing in its most basic form is the transmission of synchronized im-
age (video) and speech (audio) back and forth between two or more physically
separate locations, simulating an exchange as if the participants were in the
same physical conversation. This is accomplished through the use of cameras
(to capture and send video from your local endpoint), video displays (to display
video received from remote endpoints), microphones (to capture and send audio
from your local endpoint), and speakers (to play audio received from remote
endpoints). Multi-participant conferences require either (a) a ”multi-point con-
trol unit”, which is a server receiving video and audio from each participant and
transmitting image and audio of the active speaker back to each participant of
(b) an IP multicast enabled network and application, where each participant
sends voice and video to every other participant. An excellent introduction to
videoconferencing is available in the ViDe Videoconferencing Cookbook.

Protocol standards for videoconferencing enable interoperability among dif-
ferent vendors’ implementations of these components. While a number of video-
conferencing solutions exist, this cookbook will focus on those that are standards
based. Today, there are two standards for videoconferencing and voice over IP:
the International Telecommunication Union (ITU) developed the earliest such
standard, known as H.323, and the Internet Engineering Task Force (IETF) has
developed the Session Initiation Protocol (SIP).

10

http://www.vide.net/cookbook/
http://www.itu.int/home/
http://www.ietf.org/

4.1.2 Standards for videoconferencing/VoIP

4.1.2.1 ITU-T H.323 The ITU Telecommunication Standardization Sector
(ITU-T) is one of three Sectors of the International Telecommunication Union
(ITU) and works to provide high quality standardsÂ (Recommendations) cover-
ing all fields of telecommunications. Arguably the most popular and extensible
early compressed videoconferencing was enabled via the ITU standard called
H.320, describing videoconferencing services over ISDN and T1 leased and ded-
icated telephone lines.

H.323, was first approved by the ITU in 1996. H.323 was designed to both
function like and interoperate with H.320, changing the transport layer only so
that the protocol would work on the Internet. H.323 parallels the telephone
system in having an architecture based on intelligent call control and relatively
”dumb” endpoints; this design is based on circuit-switching and a desire to
provide centrally controlled, highly managed services.

H.323 is not one particular protocol but is rather an umbrella standard
consisting of several different protocols. Signaling and call control are handled
by Q.931 as defined in Recommendation H.225.0 and Recommendation H.245.
Once call control completes, the media transfer can begin by using the IETF
Real Time Protocol (RTP). A variety of audio and video codecs are supported,
and the standard includes both necessary and optional components. H.323
includes a security protocol known as H.235, which describes authentication
and encryption using passwords or digital certificates.

4.1.2.2 IETF SIP SIP is a signaling protocol for establishing calls and
conferences over IP networks. Unlike H.323, SIP is a standalone protocol; it
does not handle media transfer, resource reservation, or even session description.
Even though SIP is not an all-in-one solution, it does work well with other
protocols and thus, allows for flexibility in defining a videoconferencing solution.
RTP may be used for media transfer and SDP for session description. SIP
originated in the mid 90’s (about the time H.323 was becoming finalized as a
standard) so that it would be easy to invite people to view an IP multicast
session like a shuttle launch on the M-Bone.

Rather than being a telephony-based protocol, SIP is modeled after other
Internet text-based protocols such as SMTP and HTTP, and was designed to
establish, change, and tear down calls between one or more users in an IP
network in a manner totally independent of the media content of the call. Like
HTTP or eMail, SIP moves application control to the endpoint, eliminating the
need for intelligence in the network core. This design is based on TCP/IP and
a desire to put as much management control as possible at the endpoint.

The SIP protocol includes authentication using passwords or signed (S/MIME)
messages. The SIP protocol is fully described by IETF RFC 3261.

11

http://www.itu.int/ITU-T/
http://www.itu.int/ITU-T/
http://www.faqs.org/rfcs/rfc3261.html

Figure 6: 4.1

4.1.3 Videoconferencing and VoIP Architecture Overview

The basic architectural components for videoconferencing/Voice over IP are
illustrated in Figure 4.1. This diagram is protocol-independent and emphasizes
the similarities between H.323 and SIP architectures.

Two independently administered and geographically separated domains are
depicted. Each domain contains endpoints, an authentication server, a person
directory, a call server, a policy server, one or more gateways and routers. Some
components, such as endpoints and callservers, are commonly deployed; other
components such as policy servers are rarely deployed at this point in time.

For both H.323 and SIP architectures, users have a device such as a mobile
phone, PC or laptop with microphone and camera, or other ”appliance”. All
these devices contain the client software for the protocol. The H.323 protocol
refers to these clients as ”Endpoints”; the SIP protocol refers to these clients as
”User Agents”. These clients are able to directly place calls to other clients of
the same protocol. The client software also encodes and decodes the multimedia
streams.

Both H.323 and SIP architectures utilize a call server. The H.323 protocol
refers to this server as the ”Gatekeeper” while the SIP protocol refers to ”Proxy
Servers”. Call servers are used for signaling information outside of the media
stream, including user authentication, managing usage, user’s location, etc.

The Multipoint Control Unit (MCU) is used for multiparty conferencing. In
H.323, the MCU is treated as a special endpoint; it’s role is to receive incoming
streams from each conference participant and select one of these streams to send
back to each conference participant except the one selected for this broadcast.
SIP MCU’s are in early beta testing at the time this cookbook was written.

Gateways serve as protocol translators; to place a call from an H.323 end-
point to a SIP user agent, an intervening gateway would be needed to translate
both the call setup/session initiation steps; both H.323 and SIP use RTP to
encode the media.

12

Figure 7: 4.2

Figure 8: 4.3

4.1.4 Non-standard Videoconferencing Protocols

Additional, non-standard protocols for videoconferencing also exist. Two pop-
ular systems used especially in higher education research circles are the Access
Grid (AG) and Virtual Rooms Videoconferencing System (VRVS). While both
AG and VRVS are based on IETF standards, the bundling of these standards
as a single service provides unique capabilities but also makes it difficult to
interoperate with standard architectures.

Figure 4.2 illustrates AG’s most significant unique features that include mul-
tiple video windows per AG node, multiple audio streams, and very large screens
so that all views from each participating node can be seen in each location.

Figure 4.3 illustrates the VRVS architecture. The reflectors layer (circled in
yellow) is the service core of VRVS. Here, users login to local servers, virtual
rooms are hosted along with scheduling calendars, and translations to and from
supported protocols are provided.

While H.323 and SIP are based on the concept of one person calling another
person (the telephone model), AG and VRVS are designed around the concept
of entering a virtual meeting room. In the AG model this is called the ”Virtual
Venue” and corresponds to a group network address (Class D IP Multicast ad-
dress). In the VRVS model, this is called a Virtual Room and is accomplished
by communication among the distributed set of reflectors - users connect to
the service and the service makes sure all room participants receive each others

13

streams. Persons can only be reached through these virtual locations; further-
more, the virtual locations are in general not permanent. A virtual meeting
room or Class D address will be assigned for a particular meeting or series of
meetings, and then perhaps reassigned for another purpose. A person never has
a permanent videoconferencing address in this design.

To accommodate the need to communicate with users of AG and VRVS
systems, H.350.4 describes a generic object class that can be used to describe
an AG or VRVS user.

4.1.5 Gateways from Standard to Non-Standard videoconferencing
systems

An especially useful feature of VRVS is that it provides gateway services so that
H.323 endpoints, SIP user agents and Access Grid Nodes are accessible. For
instructions for joining Access Grid meetings through VRVS, consult the VRVS
Website (Documentation - Frequently Asked Questions) and also this ’How to
Guide’.

4.2 Directory Services

4.2.1 Overview

Directory services can be thought of as databases that are have been optimized
for reading information. Directory services are meant to store and organize, in
a hierarchical structure, large amounts of related information and to make this
information easily accessible through a standard query interface.

4.2.2 Enterprise Directory Services

The term ”enterprise directory services” refers to central stores of information
about people associated with an institution. This centralized data is usually
authoritative, meaning that the set of people responsible for entering data cor-
rectly and maintaining its integrity are the only sources for that data. For ex-
ample, an enterprise’s Human Resources department has the responsibility for
correctly maintaining information about who is an employee of that enterprise,
while the telecommunications department is responsible for assigning telephone
numbers, and the computer services department is responsible for assigning an
email address. If each of these three departments - Human Resources, telecom-
munications, and computer services - maintain separate lists, each department
winds up duplicating information held in other areas. The inevitable results is
that Human Resources has a correct list of names, but out of date or incorrect
email and telephone numbers; likewise, telecommunications may not be aware
that someone has left the enterprise or changed their last name.

Rather than maintaining three separate lists, the enterprise directory ap-
proach builds ONE directory that is used by all departments, gathering infor-
mation from the authoritative sources. Elimination of redundancy and admin-
istrative overhead has tremendous ROI, especially for large organizations. For

14

http://www.vrvs.org
http://www.vrvs.org
http://www.accessgrid.org/agdp/howto/vrvs.html
http://www.accessgrid.org/agdp/howto/vrvs.html

example, a centralized directory service provides a single place to enable or dis-
able user accounts and passwords for every service provided by the enterprise.

The administrator hoping to deliver multimedia communications services
must either replicate these services or link into the existing processes. Certainly
videoconferencing and voice over IP service providers should take advantage
of enterprise directories rather than providing customers with ”closed box” so-
lutions that require either manual data entry or data replication. Early ex-
periences with multimedia communications have shown that after deployment
reaches a critical size, the cost of manual or redundant identity management
quickly becomes the greatest cost associated with delivering the service.

4.2.3 LDAP

The Lightweight Directory Access Protocol (LDAP) is a standard describing
access to directory services. LDAP was derived from the OSI (Open Source
Initiative) Directory Services model X.500 known as ”DAP” (Directory Access
Protocol). DAP runs over the OSI network protocol stack. LDAP’s overall data
and namespace model is quite similar to X.500. The major difference is that the
LDAP protocol is designed to run directly over the TCP/IP stack, which makes
it ”lightweight”. The current version, LDAP V3 (IETF RFC 3377) , includes
important security enhancements.

LDAP is a protocol, not a database. A protocol describes messages used
to access certain types of data. It is possible to store data in a variety of
backend data stores and use the LDAP protocol as a standardized querying
interface. LDAP also provides a data model that standardizes the naming and
organization of the data. Finally, LDAP servers are designed to optimize read
functions, since the main purpose of this service is to answer queries regarding
relatively non-volatile data.

The LDAP information model structures data as a tree - the Directory Infor-
mation Tree (DIT). An entry in the DIT corresponds to a node in the tree, and
contains information about an object Class. ObjectClasses have both required
and optional attributes, and attribute typing defines the encoding and matching
rules to be used during searching. The LDAP information model is also called
the LDAP schema.

LDAP provides globally unique naming. By following a path from a node
back to the root of the DIT, a unique name is built and is referred to as that
node’s distinguished name (DN). Figure 4.4 shows an example DIT. Following
a path from the gray dotted arrow to the base DN, the unique distinguished
name ”uid=jhc,ou=people,dc=uab,dc=edu” is built.

Access via the LDAP protocol is implemented by bindings (authentication),
queries, and updates. Authorization to access data can be managed using access
control lists (ACL’s) which are not standardized.

This very brief summary is intended to provide you with enough vocabulary
to read this cookbook. Our resources section at the end contains a number
of excellent books and white papers providing more thorough information. A
handy website for learning more about LDAP schema is Alan Knowles’ LDAP

15

ftp://ftp.rfc-editor.org/in-notes/rfc3377.txt
http://ldap.akbkhome.com/

Figure 9: 4.4

Schema Viewer. Another useful tool is Jarek Gawor’s LDAP Browser/Editor
software, available from the University of Chicago. This freely available software
provides a user-friendly Windows Explorer-like interface to LDAP directories
with tightly integrated browsing and editing capabilities. It is entirely written in
Java with the help of the JFC (SwingSet) and JNDI class libraries and connects
to LDAP v2 and v3 servers.

4.2.4 LDAP Directory Server Implementations

A number of LDAP directory server implementation choices are available. There
are a number of factors to consider when selecting your implementation, in-
cluding price, familiarity with supported platforms, or integration with existing
infrastructure.

• OpenLDAP is an open source LDAP Directory Server implementation.
Chapter 9 describes how to install and configure OpenLDAP for use with
H.350.

• SunOne (iPlanet) Directory Server software began under the name ’iPlanet’
(formerly Netscape) and has since moved to ’Sun One’ under new manage-
ment. This is a popular product and is relatively easy to install and con-
figure. Chapter 8 describes how to install and configure SunOne iPlanet
for use with H.350

• Active Directory is Microsoft’s proprietary directory service for Windows
2000 and 2003. Active Directory supports the LDAP protocol. Chapter
10 describes how to install and configure OpenLDAP for use with H.350.

• Novell Directory Service (eDirectory, formerly called NDS) is Novell’s pro-
prietary directory service for Netware. NDS supports the LDAP protocol.
We would be delighted to have someone provide instructions for installing
and configuring eDirectory for use with H.350.

16

http://ldap.akbkhome.com/
http://ldap.akbkhome.com/
http://www.iit.edu/~gawojar/ldap/
http://www.openldap.org
http://docs.sun.com/db/coll/S1_ipDirectoryServer_51

4.3 Security for Videoconferencing/Voice over IP

Security for videoconferencing requires consideration for both the signaling and
media channels. While media transmission is typically end-to-end, the signaling
(call setup for H.323, session initiation for SIP) involves a number of hops from
endpoint through callservers or gateways to remote endpoint. Ironically, efforts
to secure networks such as installing firewalls and network address translators,
often interfere with the ability to communicate. An entire book could be written
about security and multimedia conferencing and thus is well beyond the scope
of this section; the focus here is on two core foundations for security: authen-
tication and authorization, and on security specifications that are already part
of existing conferencing protocols.

Authentication is the act of establishing your identity: ”Who are you?”, in
a manner that can be considered to be reliable. Authorization is a decision
made by the system regarding what you (the identity you have established) are
allowed or not allowed to do. If you cannot reliably establish a person’s identity,
it is not possible to make meaningful authorization decisions (except for DENY
ALL, of course). H.350 has attributes used for authentication and authorization;
these attributes were designed with each of H.323 and SIP’s existing security
protocols in mind, so that no changes to existing standards would be needed to
use these security attributes. This design goal is discussed in detail in Chapter
5.

4.3.1 H.323 Security Standard H.235

Security for H.323 is described by ITU-T standard H.235 ”Security and en-
cryption for H-Series multimedia terminals”. The scope of this standard is to
provide authentication, privacy and integrity for H-323. It is important to note
that H.323 is generally a device-centric protocol; ”the endpoint registers”. H.235
provides a means for a person, rather than a device, to be identified. Annex D
describes a simple, password-based security profile; Annex E describes a profile
using digital certificates and dependent on a fully-deployed public-key infras-
tructure; and Annex F combines features of both D and E. Use of these security
profiles is optional and in the marketplace today, H.323 vendors have left these
profiles largely unimplemented in their products.

4.3.2 SIP Security Standard

The scope of SIP security includes authentication, encryption, and non-repudiation
via digital signatures. SIP authentication uses a mechanism called SIP digest
(due to the use of an MD5 hashing function on the username/password com-
bination). Digital certificates are used after authentication for digitally signing
messages, to prevent message tampering.

17

4.3.3 Does multimedia conferencing really need authentication and
authorization?

Each of H.323 and SIP permit use of IPSec (network layer encryption) or TLS
(transport layer encryption) between elements in the call path; however, these
techniques are considered to be orthogonal to the protocols themselves. You may
be wondering at this point why authentication is important to the application at
all. Some answers include that billing for a service cannot be done without some
confidence that bills are generated correctly and sent to the appropriate person
for payment, and that a service provider may wish to offer different service levels
at different rates and cannot decide which rate to charge without some form of
authentication.

Any of these business drivers could be met with a local server of some type;
the challenge is more evident when considering a federated model of service. If
public institutions in North Carolina operate a multimedia service for anyone
associated with any of those institutions, it is unlikely that there would be a
single source for authenticating all those persons. Each university has its own
authoritative lists of people and probably does not use identical authentication
methods. The state-wide call server may have to execute a decision such as ”can
this person from UNC-Charlotte contact the classroom unit at UNC-Chapel Hill
at this time of day?”. The authorization decision - permission to use - is made
at Chapel Hill while the user’s identity is known to the Charlotte campus. The
remote usage policy decision point may instead be in Alabama, or the Nether-
lands, where an entirely different organization manages the service. Neither
H.323 nor SIP today provide solutions to this federated administration model;
certainly reliable authentication based on authoritative institutional data is a
key part of the solution.

5 Introduction to H.350 Directory Enabled Mid-
dleware for Multimedia

Early providers of videoconferencing and voice over IP services found that they
could support a few dozen users with manual and marginally secure operational
practices. The growing interest in Internet video teleconferencing, instant mes-
saging, voice over IP, data sharing, and other collaborative activities, however,
has increased the number of users has into millions. Providers of these ser-
vices have thus looked for more scalable and manageable architectures order to
reliably and securely meet their users’ expectations.

5.1 Recommendation H.350

Current multimedia communications technology on the market today typically is
not designed to integrate into enterprise identity management processes. How-
ever, the International Telecommunication Union’s (ITU) recently completed
H.350 series of Recommendations provides a standardized way to manage mul-

18

timedia communication information in the enterprise. H.350 describes a stan-
dardized schema that represents multimedia conferencing information in LDAP
directories, including SIP, H.323, H.235 and H.320 protocols. Non-standard
protocols can also be represented, which is useful for facililating communica-
tion with ”virtual room” based conferencing technologies such as Access Grid
and VRVS. The H.350 schema is designed to require minimal changes to the
enterprise directory.

5.2 Design Goals

H.350 was designed with the following goals:

5.2.1 Authoritative Data Source for SIP, H.323, H.235, H.320 and
proprietary call servers

Two directories are involved: the enterprise person directory, and the H.350
directory. The enterprise person directory contains at least the inetOrgperson
object class (and perhaps the eduPerson object class) which include name, ad-
dress, and various methods for contacting that person such as telephone, fax,
email, and commURI. The commURI is simply an LDAP URI that points to a
user’s multimedia conferencing information in the H.350 directory. The URI has
a label to give a friendly name to each endpoint, such as ’Office Telephone’ or
’Home Instant Messaging.’ Each instance of a communication object will have
a commURI and it will be common for users to have multiples. This approach
is relatively leverages use of the existing enterprise directory and is relatively
non-invasive to the enterprise directory: all that is required is a commURI.

The data for each multimedia conferencing endpoint is contained in the
H.350 directory in the entry pointed to by a user’s commURI. This includes
all of the protocol elements and addresses for that endpoint. Each instance
of a multimedia communications endpoint is represented by a single entry in
the directory. Each instance may have multiple addresses associated with it or
even multiple protocols, if the associated device supports those protocols. A
pointer, called ’commOwner’, refers back to the user with whom this endpoint
is associated. Thus, given a user, it is possible to find all of her endpoints.
Given an endpoint it is also possible to find its user. No other copy of this data
is maintained. It is separate from the enterprise directory so that its operation
can be optimized for multimedia communications. It may also be convenient to
partition the management of H.350 services from enterprise directory services,
especially where two sets of managers are involved.

<COULD USE SOME DIAGRAMS HERE>

5.2.2 Automated Client Configuration

SIP proxies and H.323 gatekeepers are examples of call servers that can perform
registration and call routing for multimedia communication services. In some

19

cases, these call servers will be H.350 aware, such as the RADVISION ECS sys-
tem. These H.350 enabled call servers can pull their information directly from
the H.350 directory without further modification. This is the simplest and best
approach to directory enabled conferencing. As an additional benefit, endpoints
can be properly configured by pulling information down from the H.350 direc-
tory, which solves the problem of manually configuring endpoint software at
the desktop. By linking account management and authorization automation to
the enterprise directory using the LDAP protocol, H.350 enables companies and
universities to scale up video and VoIP operations from a few hundred endpoints
to full enterprise deployments without hiring additional systems administrators.

Many systems will not be H.350 aware, and instead will utilize some pro-
prietary data management scheme, such as an internal database or proprietary
LDAP schema. In these cases the authoritative H.350 information may be repli-
cated and stored in the call server’s expected data store and format.

5.2.3 White Pages Listings and Lookups

H.350 allows you to search for and find a user’s video or VoIP address just
like you would find an email address or telephone number today. Because it is
standardized, H.350 directory listings will work with multiple vendors’ equip-
ment. An additional benefit of standardization is that ”Directory of Directories”
or metadirectory searches are possible, resulting in the potential for a global
videoconferencing directory.

5.2.4 Support for ’clickable’ dialing where appropriate.

<NEED SOME WORDS HERE>

5.2.5 Authentication

H.350 provides a storage location for authentication credentials that is both
convenient and consistent. One of the barriors to PKI deployment has been the
indeterminant location of the required credentials; H.350 provides a consistent
and standardized location for storing digital certificates and other credentials
such as passwords used by the supported protocols. Thus, video and VoIP
conferencing can enjoy a more secure operational environment using H.350. A
more detailed discussion of H.350 support for authentication and the relationship
of these credentials to enterprise credentials follows later in this chapter.

5.2.6 Authorization

H.350 contains a service provider defined ”class of service level” attribute. De-
pending on the local usage policy, the attribute could be populated based on
type of equipment (the commObject attributes stored in the H.350 directory)
or the authorization attribute could be populated based on information in the
person directory (”executive level”, ”student”, or ”gold level customer”). This

20

information can be used by the call server to permit or prioritize access to
services.

5.3 Overview Leveraging Enterprise Authentication

In this section, the question of how the endpoint and call server learn the needed
credentials is discussed. This section discusses only H323 authentication scenar-
ios, although similar issues exist in SIP.

Three potential data storage scenarios exist for endpoint and gatekeeper
configuration information:

• Non-Standard Storage : No use of h235Identity commObjects

• Endpoint-only use of H.350 Storage

• Endpoint and Gatekeeper use of H.350 Storage

5.3.1 Non-Standard Storage

< Figure: Non-Standard Storage>
Prior to the adoption of H.350, there was no standard way to store End-

pointID or Password. The endpoint and gatekeeper have separate data stores
for this information. The endpoint typically “reads” data, like passwords, when
entered by the user. The gatekeeper has some predefined list of users stored in
a database it uses.

5.3.2 Endpoint-only Use of H.350 Storage

< Figure: Endpoint h323Identity-based Storage >
When commObject is introduced into the configuration, the endpoint is able

to read its configuration data from a well known location: the h323Identity and
h235Identity objects on the H.350 server. In this scenario, the gatekeeper is still
using its own private data store to define users and passwords.

5.3.3 Endpoint and Gatekeeper Use of H.350 Storage

< Figure: Endpoint and Gatekeeper h323Identity-based Storage >
The third scenario, Figure , shows a configuration where both the endpoint

and the gatekeeper use the same h323Identity commObject for storing infor-
mation about a particular endpoint. The endpoint and gatekeeper have differ-
ent uses for this object. The endpoint uses the object to completely configure
itself in preparation for H323 activity. The gatekeeper, however, uses the ob-
ject as its database of videoconferencing-specific user names and passwords.
If the gatekeeper and endpoint both read the user’s h235IdentityEndpointID
and h235IdentityPassword from the same database, they will naturally be using
shared values for authentication exchanges.

There are a few issues with the third scenario. The endpoint and gatekeeper
need different types of access the data. For example, an endpoint should only

21

be able to read its own configuration object and no one else’s, otherwise the
passwords would not be secret. A gatekeeper, however, needs to read at least
the h235IdentityEndpointID and h235IdentityPassword for every endpoint that
will attempt to authenticate. This can be handled, for example, by ACL rules in
LDAP. A straightforward way to restrict access correctly is to have the endpoint
bind to the LDAP server with the users credentials, and use an associated
ACL.. The gatekeeper, however, can access the commObject LDAP server with
a privileged account that has been given access to all commObjects.

Once the endpoints and the gatekeeper are using the same database, they
are effectively synchronized with each other. While this scenario provides a way
to synchronize authentication credentials between the endpoint and gatekeeper,
it does not in itself address enterprise authentication.

5.3.4 Enterprise Identity

An enterprise user typically has some enterprise identity (EntID) and associated
password that can be used to access services across the enterprise. It’s desirable
for enterprise users to access video conferencing and IP Telephony services using
the same EntID and password. This is easy for the end-user, but introduces the
problem of protecting those credentials from misuse. If they are compromised,
then all of the services available to the user across the enterprise would also be
compromised.

5.3.5 Enterprise Authentication using LDAP

In many environments, LDAP has grown from being just the place where white-
pages information is stored to a source for central authentication credentials.
Because LDAP is a common authentication mechanism, it’s helpful to review
the authentication methods that can be used when connecting (binding) to an
LDAP V3 server.

Clear Text Password This type of bind sends an unencrypted user name and
password to the LDAP server for verification, and can be secured only by
using a secure channel to transmit the password, eg. SSL.

Secure Authentication and Security Layer (SASL) This type of bind al-
lows the client and server to negotiate an authentication mechanism of
their liking. Supporte mechanisms include Kerberos, SKEY, external, or
other authentication mechanisms.

Digest MD5 Hashed Password This type of bind secures the authentica-
tion credentials during a bind by sending hashes of data based on the
password. It is a form of SASL authentication and is similar to how H.323
protects the password during its authentication.

Client Certificate This type of bind uses client certificates at the SSL layer
to identify the user. It is a form of external authentication using SASL.

22

What’s important to remember about all of these LDAP authentication methods
is that they assume that the authentication is happening just after the user
has entered their password at a prompt; in other words, in the authentication
exchange the LDAP client learns the clear-text secret that is used to negotiate
the authentication. The LDAP server will use its internal database to find the
secret corresponding to the client user in order to verify that the user has the
correct secret. (Note: this is true even for the certificate based authentication.
While the LDAP server only needs a public key, the LDAP client must have the
private key).

5.3.6 Enterprise Credential Access

In an enterprise environment with a single set of administrators, one can imagine
that the EntID and password could be used directly in an H323 authentication
sequence. The endpoint would prompt the user for their EntID and password
and then use those credentials to negotiate the authentication exchange with the
gatekeeper. The gatekeeper would access the enterprise’s store of EntIDs and
passwords when an authentication request arrives, retrieve the corresponding
user’s credentials, and then be able to verify that the user at the endpoint possess
valid enterprise credentials. This solution assumes that the H323 services are
run by the same organization that manages the enterprise credentials and that
it can be ensured that all authentication components will have access to the
user’s enterprise credentials. This solution roughly corresponds to Figure .

In heterogeneous enterprise environments, where the enterprise authentica-
tion services are frequently managed by one organization and the H323 services
are managed by another, there are not only differences in usage and access
policies for the services there may be significant differences in the technologies
used to store data. We’re aware of these issues, and this is why we are migrat-
ing services to use standard data access protocols like LDAP. Furthermore, the
enterprise authentication service providers may not be able to accommodate re-
quests to access a user’s enterprise credentials for each service that wants access,
either because of political boundaries or trust barriers. It’s not unreasonable to
be cautious about handing out access to user credentials. These realities fre-
quently lead to each system environment defining it’s own set of credentials for
users. An enticing solution to this problem is to allow each system environment
to use their own authentication credentials but tie access to those credentials to
a user’s enterprise credentials.

5.3.7 Enterprise Authentication at the Endpoint

Endpoints that are upgraded to use h323Identity commObjects will inherently
be LDAP aware. In order for an endpoint to read the h323Identity, it needs
to bind to the LDAP server that contains commObjects. Enterprise authen-
tication credentials can be tied in at this point by requiring the endpoint to
use an authenticated bind to the commObject server with the user’s enterprise
credentials. After a successful bind, the endpoint will know that this is a valid

23

enterprise user and can have access to only that user’s h323Identity commOb-
jects. While this neatly ties in enterprise authentication at the endpoint, it
doesn’t describe how those enterprise credentials could be used by the H323
authentication exchanges.

5.3.8 H.323 Authentication Options

There are two options for H323 authentication at this point: use the enter-
prise credentials or use the information stored in the h235Identity credential
attributes.

The user’s enterprise credentials can only be used directly for H323 authen-
tication in environments where the gatekeeper has access to the user’s enter-
prise credentials. This is because both the endpoint (client) and the gatekeeper
(server) need know the user’s secret so they can challenge each other to verify
that they know it. The secret never travels from the endpoint to the gatekeeper.
In other words, the gatekeeper will never ”get” the secret from the endpoint.

It is not possible for the gatekeeper to simply “participate” in the enterprise
authentication scheme like the endpoint did in the LDAP bind scenario above
because the gatekeeper can not verify the user’s password by trying to perform
an authentication with that password against the enterprise authentication sys-
tem. In order to validate the user in this way, the gatekeeper would need the
user’s clear-text password, which is not permitted in this scenario.

The second option is to use the enterprise credentials of the user to “unlock”
the h235Identity data. This is the scenario of Section . In this scenario, both the
endpoint and the gatekeeper will use the h235Identity object associated with
the current endpoint. This scenario is represented by Figure . The endpoint
will access the h323Identity in order to retrieve it’s configuration including the
h235IdentityID/ h235IdentityPassword or userCertificate, as needed. The ad-
vantage of this approach is that the endpoint and gatekeeper will be using the
same data store so they will naturally be using the same secret to negotiate the
authentication. The endpoint can access the commObject LDAP server with the
user’s enterprise credentials and the gatekeeper can access commObject LDAP
server with it’s own credentials. The end-user is completely unaware of the fact
that a separate password is being using to negotiate the H323 authentication.
All the user did was present their enterprise authentication. This approach also
offers some autonomy between the H323 system and the enterprise system.

The biggest drawback to this approach is the management of the h235Identity
credentials. How does one set the credentials? Should they be permanent? If
they change, how frequently should they change?

5.3.9 Dynamic Credentials

Dynamic credentials could be used to address the questions and concerns over
managing the h235Identity credentials and (potentially) sending them over un-
encrypted communication channels to the endpoint. If this password could be
changed on a regular basis, then security might be improved. Dynamic cre-

24

dentials aren’t a requirement. It’s conceivable that the credentials could be
set when the h323Identity commObject is defined and then never be changed
again. The solution of having the endpoint and gatekeeper both access the
h323Identity would work just the same. The reason dynamic credentials are
desirable is because permanent passwords are vulnerable to security breaches.

This is especially true in environments where a clear-text piece of data is
stored in an LDAP object that might be read using an insecure channel. Keep in
mind that even if secure authentication is performed, LDAP does not inherently
protect the data that is transfered afterwords. Only if a secure transport is
used or if security is negotiated for the connection will the data be kept secure
as it travels the network. Since the h235Identity credentials are transparent
to the end user, their change policy can also be transparent. The enterprise
user just needs to remember their enterprise credentials. The H323 system will
ensure that the correct H323 credentials are used internally. There are a few
approaches to changing the h235Identity credentials. If they are short-lived
one could potentially build a Kerberos-like system where the authentication
credentials have a life span just long enough to negotiate the H323 authentication
but be useless for later attempts. The problems with these approaches are an
agreement on how long the life time of the credential should be and where the
life time is defined. Three options are considered below in order of increasing
desirability.

Change h235IdentityPassword Regularly

The simplest option is to just change the h235IdentityPassword on some regular
basis. It might be most convenient to do this only when the h323Identity is read
by and endpoint. Some LDAP servers internally support taking specific actions
when a user binds to the directory. This mechanism could be used to set the
h235IdentityPassword whenever a user binds to the commObject server. One
problem with this approach is that once the password is set it wouldn’t expire.
It would remain the same until the user binds to the commObject server again.
This might not happen for a long time. It would be nice to expire the password.
The problem is how long should the life time of the password last and how
do you share that time period with the endpoint and gatekeeper so they know
when not to use the password anymore? Unfortunately, the password itself
won’t contain any timing data, so some type of outside timing source would be
required (although a temporary digital certificate COULD carry a timestamp).

Change h235IdentityID and h235IdentityPassword Regularly

The second approach would be to use some common time stamp to show when
the password expires. The time stamp could then travel with the password and
the password could always be checked against it. The h235IdentityID might
suffice as a time stamp (ie. generate an h235IdentityID based on the expiration
time every time you generate an h235IdentityPassword), but this might not
be a legitimate use of the attribute nor a very expected one. The mechanism
still requires that the clocks between the password/uid(timestamp) generator

25

and the consumers be synchronized. It also requires that the endpoints and
gatekeepers be updated to agree on this use of h235IdentityID. It also seems
fairly fragile.

Use short-lived userCertificate in h235Identity

The third approach is to use short lived certificates, similar to the ones generated
by the pkcs11 component in the kx5093 world. This approach is appealing
because certs have a clearly defined expiration mechanism, eliminating the UID
hack of the previous example. The client knows when the certificate expires
and can just re-read it’s h235Identity to get a new one once the old one expires.
The gatekeeper has the same advantage. It can simply throw out expired certs
and if a new authentication request arrives from the endpoint, it can look up
the cert again. Another advantage of this approach is it fits in nicely with the
certificate based infrastructure of H323.

5.3.10 SIP and Enterprise Authentication

5.3.11 Leveraging Enterprise LDAP Authentication

5.3.12 Additional approaches to integration with enterprise authen-
tication

6 Architectural Decisions for Implementers

6.1 Directory Architectural Decisions

There are two alternative implementations when building the directory services.
The Enterprise Directory and commObject Directory are intended to be viewed
as logical units and not physical directories. They can both be considered di-
rectory branches and can be implemented as one central directory server or two
physically different directory servers. The advantages and disadvantages of the
two structural choices are described below.

6.1.1 Person Directory and commObject Directory

commObject information is located separately from person or resource infor-
mation. Its location may be a sub-tree of the larger enterprise directory or
on a separate logical server. The person directory will continue to host tra-
ditional person or resource information such as name, telephone, address, etc.
In addition, it will contain a commURI link to the commUniqueId attribute
in commObject. Rather than extending the enterprise directory’s person object
class, this linking provides the following advantages:

1. Changes to the enterprise directory are not to be undertaken lightly and
are often not under the administrative control of the video/voice over IP
service provider.

26

2. Elements associated with video and voice over IP communications are
very dynamic. The technology itself is changing quickly in relation to the
enterprise directory. Separation allows changes to the commObject LDAP
infrastructure without modifying object classes of the enterprise directory.

3. A call server may need to access commObject data very differently than
other applications access the enterprise directory. A separate server can
be tuned for performance and access policy to accommodate these imple-
mentation requirements. For example, a call server may need to query the
commObject server many times per second in order to handle real-time
call processing, or it may read and cache many commObject attributes at
once.

Any user or resource with multimedia conferencing capabilities should have an
instance of commObject created and linked to an existing entry in the enterprise
directory with a commURI.

6.1.2 Single Directory Server

The Single Directory Server approach is best to employ when simplicity is the
driving factor and no enterprise directory service exists. A single directory
server is recommended when services will be provided for only a small number of
people. A distinct advantage of implementing both directory branches in a single
directory is that everything is in one location. With the Enterprise Directory and
commObject Directory branches in the same directory, administration is limited
to that single directory and there is no need to worry about communication
between two different directories.

With this approach, some thought must be given to how you will manage user
accounts. If your server is ”open to the public”, you may choose to allow anyone
to create an account, set their identity, and set and reset their own password.
If ”do it yourself” account management does not fit your requirements – for
example, only people who are current employees may use the system – you will
need solutions for verifying user identity and status, and should be prepared
with a solution to integrate the information you have with an enterprise printed
or on-line directory.

Registration services require privileged access to the commObject Directory
branch because the call server must verify that information provided by the user
matches that stored in the directory before registering the user. It is possible to
allow privileged access to only one branch in the directory; however, because of
the complexity and lack of standardization of LDAP access control rules (ACI
rules), it is too easy for novice LDAP managers to err in setting access control.
One mistake in the ACI rules could give the registration server (and perhaps a
hacker) access to all of the information in the Enterprise Directory branch.

Another disadvantage to the single server approach is that all queries will
be made to this single directory server. Placing both branches into the same
server doubles the load on a single directory server.

27

6.1.3 Separate Enterprise Directory and commObject Directory Servers

It is best to implement the Enterprise and commObject Directory branches in
two different directories when load and security on the Enterprise Directory
are the major concerns. It is also easier to implement the architecture in this
way when there is a preexisting Enterprise Directory already in place. Most
large universities already have enterprise-level people directories, and it is an
advantage to have this in place. The enterprise directory managers may not be
ready and willing to manage the entire commObject schema, especially given
the need for privileged access to the directory. With a separate commObject
directory, only minimal changes need to be made to the Enterprise Directory in
order to support H.350.

Using separate directories reduces the number of queries on one single di-
rectory. By balancing the query load on different directories, the traffic on the
Enterprise Directory is greatly reduced. Another advantage to using separate
directories is that by separating the Enterprise Directory and commObject Di-
rectory onto two distinct servers, , it is much easier to provide tight security on
the Enterprise Directory while still allowing privileged access to the commObject
Directory..

One of the disadvantages of this approach is that there are additional BIND
requests needed. This isn’t a terrible burden overall, but it is additional overhead
which should be discussed. With the standalone central directory, you need only
BIND to one directory. All subsequent queries are made to that directory. For
this scenario, however, there are two directories with which you must BIND.

Another disadvantage of having separate directories is simply the increase
in complexity. Adding additional components to any architecture will obviously
increase the complexity of the architecture. With the addition of another di-
rectory, an additional directory administrator may be needed. Communication
between the directory service managers will need to be organized and pass-
through authentication will need to be established.

6.1.4 Coordinating Enterprise and Videoconferencing Directory Ser-
vices

If different groups manage the enterprise and H.350 directories, what methods
are suggested for coordinating data entry between the two?

6.1.5 Public Directories

Multimedia communication by definition is about connecting people that are
far away. People within an institution typically want to utilize multimedia com-
munications in order to collaborate with users at other institutions. For mature
technologies such as electronic mail, it can be assumed that those remote users
will have access to their own services. However new technologies such as mul-
timedia communications require that the institution make provisions for some
level of service both to its own internal users as well as the individuals that are
outside of the institutional purview but with whom there is a legitimate interest

28

in collaboration. For this reason, it is important to provide a basic level of direc-
tory service. This will typically consist of the ability of users to create their own
LDAP inetOrgPerson (or eduPerson) identity to store name, address, telephone,
email and related basic information. It will be configured to automatically no-
tify users every 180 days to refresh their subscription, or else be purged out of
the system. It will provide a way for users to reset forgotten passwords. Early
pilots using this approach in ViDeNet have yielded very positive and scalable
results. In general, the assumption is that there will be external users, and it
is better for them to be managed in some way, rather than not managed at all.
As adoption of multimedia communications becomes widespread, these public
services can be phased out.

7 Directory Schema

7.1 Person/Resource Schema

For directory services that are useful for videoconferencing and voice over IP, an
association must be created between a person and a device or communication
service. When you look up a person in a directory, you’d like to be able to
discover their email address, telephone number (for analog and/or Ethernet
phones) and also how to reach them via videoconferencing. H.350 provides
an association of person to endpoint using the commURI object class, which
contains a labeled URI pointing to device or protocol specific information for
each type of videoconferencing endpoint or service used.

The commObject directory contains protocol-specific information. It is im-
portant to create an association between a device and the person who is using
it - perhaps for billing purposes or to establish classes of service based on at-
tributes stored in an eduPerson directory such as ”student” or ”faculty”. H.350
provides an association of an endpoint with its owner using the commObject
object class, which contains a labeled URI named commOwner pointing to the
person directory entry of its owner.

Some multimedia conferencing implementations are heavily endpoint-oriented,
whereas others are user-oriented. A group video teleconferencing endpoint in
a conference room, for example, may be referred to as ’Conference Room 201’.
This endpoint is not associated with any particular person, but is associated
with the resource Conference Room 201 and is shared by whoever needs to use
the conference room. Other endpoints may be user context-specific, deriving
their identities from the current user. For example, when logging onto a com-
puter as jdoe, a computer-based endpoint may configure itself with the address
of jdoe as stored in that user’s profile and register with a call server accordingly.
Other users logging onto the same computer may have different identities and
different user profiles so their registration messages from the one computer will
contain different identity information.

29

Figure 10: 7.1

This dichotomy of users versus resources makes it difficult to associate end-
points with users or resources. Linking commObject to a person via a commURI
generalizes this relationship. If a commOwner attribute is pointing to a person
object class, then that commObject is associated with that person. If a com-
mOwner attribute is pointing to a resource object class, then that commObject
is associated with that resource. Both people and resources can have commURI
pointers that associate endpoints with a directory entry. Enterprise directories
that support only people and not resources may choose to simply treat resources
as people.

7.1.1 inetOrgperson

The inetOrgPerson object class is a general purpose object class that holds
attributes about people. The full specification for inetOrgPerson can be found
in the IETF RFC 2798 ”The Definition of the inetOrgPerson LDAP Object
Class” .

The following inetOrgPerson example is provided in LDIF format.

version: 1
dn: cn=Theresa Miller,ou=uab,dc=uab,dc=edu
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Theresa Miller
cn: Terry Miller
displayName: Terry Miller
sn: Miller
givenName: Theresa
initials: TRM
title: associate director
uid: tmiller
mail: tmiller@uab.edu
telephoneNumber: +1 934 555 1234

30

facsimileTelephoneNumber: +1 934 555 9999
mobile: +1 934 555 1941
roomNumber: 510
carLicense: UAB13
departmentNumber: 2604
employeeNumber: 1864291
employeeType: faculty
labeledURI: http://www.uab.edu/users/tmiller/myhomepage.html

The inetOrgPerson object class is commonly included with OpenLDAP and
iPlanet distributions.

7.1.2 eduPerson

EduPerson is an auxiliary object class for campus directories designed to facil-
itate communication among higher education institutions. It consists of a set
data elements, or attributes, about individuals within higher education, along
with recommendations on the syntax and semantics of the data that may be as-
signed to those attributes. If widespread agreement and implementation of this
object class in campus directories is achieved, a broad and powerful new class
of higher education applications can be deployed. Additional information on
eduPerson is available at its home on the web: http://www.educause.edu/eduperson.

It is important for a directory to have the Person, orgPerson, and inetOrg-
Person object class hierarchy in place in addition to eduPerson. Ultimately,
attributes are what are important, but object classes (both eduPerson and its
parent classes) give additional confidence that the semantics of the attributes
are consistent between sites. Also, other applications will have expectations
that the parent object classes exist. Note that even with the full hierarchy in
place there is no requirement to populate any of the non-mandatory attributes
in the parent object classes.

A number of higher education groups (Internet2, NET@EDU, and Educause)
are working to make eduPerson a voluntary ”standard” for describing university
people. The eduPerson object class extends the inetOrgPerson class with at-
tributes supporting inter-campus access to shared resources.

7.1.3 Resource Object classes

Implementers who are interested in listing resources as well as people in your
directory (for example: ”Distance Learning Classroom #3”) may be interested
in using a standardized resource object class. IETF RFC 1274 ”Cosine and
Internet X.500 schema” includes definition of a resource object class.

The Room object class can be used to represent rooms:

objectclass (0.9.2342.19200300.100.4.7 NAME ’room’
SUP top STRUCTURAL
MUST commonName

31

MAY (roomNumber $ description $ seeAlso $ telepho-
neNumber

))

The device object class can be used to represent devices:

objectclass (2.5.6.14 NAME ’device’
DESC ’RFC2256: a device’
SUP top STRUCTURAL
MUST cn
MAY (serialNumber $ seeAlso $ owner $ ou $ o $ l $

description
))

7.2 H.350 Schema

H.350 is the base document for the series. It uses a generic object class called
commObject to represent attributes common to any video or voice protocol.
Auxiliary classes represent specific protocols such as h.323, h.235, sip, etc. Mul-
tiple H.350.X classes can be combined to represent endpoints that support more
than one protocol. For example, endpoints that support H.323, H.235 and H.320
could include H.350, H.350.1, H.350.2, and H.350.3 in their LDAP representa-
tions. In addition, the entry should contain commObject to serve as the entry’s
structural object class.

There are two basic components in the architecture:

• The commURI object class is a class whose only purpose is to link a
person or resource to a commObject. By placing a commURI ’pointer’ in
an individual’s directory entry, that individual becomes associated with
the particular targeted commObject.

• The commObject object class contains a pointer called commOwner that
points to the individual or resource associated with the commObject.

In this way, people or resources can be associated with endpoints. The only
change required in the enterprise directory is the addition of the simple object
class commURI.

CommObject data may be instantiated in the same directory holding the
person information, or in an entirely separate directory, thus allowing flexibility
in implementations.

7.2.1 Review of H.350 Design Goals

Large-scale deployments of IP video and voice services have demonstrated the
need for complementary directory services middleware. Service administrators
need call servers that are aware of enterprise directories to avoid duplication
of account management processes. Users need ’white pages’ to locate other

32

users with whom they wish to communicate. All of these processes should pull
their information from canonical data sources in order to reduce redundant
administrative processes and ensure information accuracy. Toward that end,
H.350 was designed to:

1. Enable endpoint information to be associated with people or with re-
sources such as conference rooms or classrooms.

2. Enable online searchable ”white pages” so that dialing information (e.g.
endpoint addresses) can be found along with other ”traditional” directory
information about a user, such as name, address, telephone, email, etc.

3. Enable all endpoint information to be stored in a canonical data source
(the Directory), rather than local to the call server, so that endpoints can
be managed through manipulations of an enterprise directory, rather than
by direct entry into the call server.

4. Support the creation of very large-scale distributed directories such as
white pages ”portals” that allow searching for users across multiple insti-
tutional directories. Standardized directory object classes enable searches
across multiple LDAP directories for multimedia-specific information.

5. Support multiple instances of endpoints per user or resource.

6. Represent endpoints that support more than one protocol, for example
endpoints that are both H.320 and H.323.

7. Store enough information about endpoint configuration so that correct
configuration settings can be documented to end users on a per-endpoint
basis, as a support tool, or loaded automatically into the endpoint.

8. Be extendable as necessary to allow implementation specific attributes to
be included.

9. Be non-invasive to the enterprise directory, so that support for multimedia
conferencing can be added in a modular fashion without significant changes
to the enterprise directory.

7.2.2 Extending the H.350 schema with Auxiliary classes

H.350 object classes may be extended as necessary for specific implementa-
tions. For example, a class may be extended to support billing reference codes.
Developers that implement proprietary endpoint functionality may need that
functionality to be represented by attributes in the directory, or an enterprise
may want to use attributes such as ’modelNumber’, and ’accountNumber’ that
are not defined in the standard but may be useful if implemented. Extensions
to the schema are not considered to be part of the standard.

A full discussion of schema design and extension is beyond the scope of this
document. See IETF RFC 2252 for details. Most importantly, adding attributes

33

to this architecture must be done in a way that does not break compatibility
with the H.350 standard. The only method we recommend be used to extend
H.350 is by defining an auxiliary class. The auxiliary class will should have the
special class top as its superior. The following example creates billing account
and billing manager attributes by defining them in their own auxiliary class.

objectclass (BillingInfo-OID
NAME ’BillingInfo’
DESC ’Billing Reference Information’
SUP top AUXILIARY
MAY (BillingAccount $ BillingManager $)
)

We recommend that all attributes in the auxiliary class be optional rather than
mandatory. This way the auxiliary object class itself can be associated with an
entry whether there are any attribute values for it.

The following example shows a sample endpoint that utilizes the new auxil-
iary class and attributes. This example also uses H.350.1 for h323Identity.

dn: commUniqueId=2000,ou=h323identity,dc=company,dc=com
objectclass: top
objectclass: commObject
objectclass: BillingInfo
commUniqueId: 2000
BillingAccount: 0023456
BillingManager: John Smith

7.2.3 Attribute Object Identifiers (OID)

Each attribute has an Object Identifier (OID),a globally unique numerical iden-
tifier usually written as a sequence of integers separated by dots. For example,
the OID for the commUniqueId is 0.0.8.350.1.1.2.1.1. All attributes must have
an OID. CommObject OID’s have been assigned by the ITU. The LDIF files we
provide at the end of the next chapter contain correct object classes, attributes
and OIDs needed to implement H.350.

7.2.4 Indexing

An important part of LDAP server administration is deciding which attributes
to index. Non-indexed attributes can result in search times sufficiently long
as to render some applications unusable. As in any database design, attribute
indexing decisions are made with implementation-specific activities in mind.
Certainly, user (dn) and alias lookup should be fast. The next chapter includes
an Indexing Profile for commObject directories that is optimized for use in di-
rectory of directories applications. Use of this profile is optional.

34

8 Object Class and Attribute Definitions and
Examples

8.1 commURIObject (H.350)

OID: 0.0.8.350.1.1.1.2.1
objectclasses: (0.0.8.350.1.1.1.2.1
NAME ’commURIObject’
DESC ’object that contains the URI attribute type’
SUP top AUXILIARY
MAY (commURI)
)

Definition & Use: Auxiliary object class that contains the commURI attribute.
This attribute is added to a person or resource object to associate one or
more commObject instances with that person/resource. commURIObjct
values are LDAP URIs pointing to the associated commObject represent-
ing, for example, a user’s H.323 conferencing station and SIP IP phone.
Multiple instances of commURI need not point to the same commObject
directory. Each commURI instance could point to an endpoint managed
by a different service provider.

8.1.1 commURI

OID: 0.0.8.350.1.1.1.1.1
attributetypes:(0.0.8.350.1.1.1.1.1
NAME ’commURI’
DESC ’Labeled URI format to point to the distinguished name

of the commUniqueId’
EQUALITY caseExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: Labeled URI containing an LDAP URL identifying the di-
rectory containing the referenced commObject instance. The search filter
specified by this LDAP URL shall specify an equality search of the com-
mUniqueId attribute of the commObject class. Used to find the endpoint
of the user in question. The label field may be used to represent the
function of the endpoint, such as ’home IP phone’ or ’desktop video’ for
user interface display purposes. The label portion of the field may contain
spaces as in the example below showing ’desktop video’.

Number of Values: multi

Indexing Profile: No recommendation

Example (LDIF fragment):
commURI: ldap://dir.acme.com/dc=acme,dc=com??sub?(commUniqueId=bob)
desktop video

35

8.2 commObject (H.350)

OID: 0.0.8.350.1.1.2.2.1
objectclasses: (0.0.8.350.1.1.2.2.1
NAME ’commObject’
DESC ’object that contains the Communication attributes’
SUP top STRUCTURAL
MUST commUniqueId
MAY (commOwner $ commPrivate)
)

Definition & Use: Abstraction of video or voice over IP device. The com-
mObject class permits an endpoint (H.323 endpoint or SIP user agent or
other protocol endpoint) and all their aliases to be represented by a single
entry in a directory. Each directory entry should contain commObject as
the entry’s structural object class; that entry may also contain H.350.X
auxiliary classes.

8.2.1 commUniqueId

OID: 0.0.8.350.1.1.2.1.1
attributetypes: (0.0.8.350.1.1.2.1.1
NAME ’commUniqueId’
DESC ’To hold the endpoints unique Id’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: The endpoint’s unique ID. This is the real distinguished
name (RDN)of this object. In practice, there will always be one and only
one commUniqueId for every endpoint. This attribute uniquely identifies
an endpoint in the commObject directory. It must be unique within that
directory, but need not be unique globally. This attribute has no rela-
tionship to the enterprise directory; it may however be handy to use the
enterprise distinguished name as part of commUniqueId..

Number of Values: multi

Indexing Profile: equality

Examples (LDIF fragments): commUniqueId: Device4321
commUniqueId: jilltaylor003

8.2.2 commOwner

OID: 0.0.8.350.1.1.2.1.2
attributetypes: 0.0.8.350.1.1.2.1.2
NAME ’commOwner’

36

DESC ’Labeled URI to point back to the original owner’
EQUALITY caseExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use:

Labelled URI format to point back to the person or resource object associated
with this entry. Used as a reverse entry finder of the owner(s). This attribute
may point to groups. Note that this URI can point to a cn, but applications
that want to bind authentication information across both the commObject and
enterprise directories should points to a dn rather than a cn, thus uniquely
identifying the owner of the commObject.

Number of Values: multi

Indexing Profile: presence

Example (LDIF fragment):
commOwner: ldap://dir.acme.com/dc=acme,dc=com??sub?(dn=rsmith42)
commOwner: uid=rsmith42,ou=people,dc=acme,dc=com

8.2.3 commPrivate

OID: 0.0.8.350.1.1.2.1.3
attributetypes: (0.0.8.350.1.1.2.1.3
NAME ’commPrivate’
DESC ’To decide whether the entry is visible to world or not’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: To be used by the user and indicate privacy options for an
endpoint, i.e. unlisted number. This attribute is defined as Boolean. Fu-
ture version of this Recommendation may develop a controlled vocabulary
for this attribute to accommodate multiple types of privacy.

Number of Values: multi

Indexing Profile: presence

Example (LDIF fragment): commPrivate: true

8.3 h323Identity (H.350.1)

OID: 0.0.8.350.1.1.3.2.1
objectclasses: (0.0.8.350.1.1.3.2.1
NAME ’h323Identity’
DESC ’h323Identity object’
SUP top AUXILIARY
MAY (h323IdentityGKDomain $ h323Identityh323-ID $
h323IdentitydialedDigits $ h323Identityemail-ID $

37

h323IdentityURL-ID $ h323IdentitytransportID $
h323IdentitypartyNumber $ h323IdentitymobileUIM $
h323IdentityEndpointType $ h323IdentityServiceLevel)
)

Definition & Use: The h323Identity object class represents H.323 endpoints.
It is an auxiliary class and is derived from the commObject class defined in
H.350. Implementers should review H.350 in detail before proceeding with
H.350.1. Its attributes include all H.323 Alias types. These aliases can
be downloaded to an endpoint for automatic configuration, accessed by
a gatekeeper for call signaling and authorization, and published to white
pages to create user dialing directories. Note that the following seven alias
types are defined in H.323 as dialing methods. Each of these alias types
is represented below with corresponding h323Identity attributes. Keep in
mind that these attributes are separate from information in the enterprise
directory. For example, email-ID is a separate field than a user’s email
address as represented in the enterprise directory. For implementation
purposes an administrator may set these values equal by direct entry or
by referral.

H.323 dialing method h323Identity attribute
h323-ID h323Identityh323-ID

dialedDigits h323IdentitydialedDigits
email-ID h323Identityemail-ID
URL-IF h323IdentityURL-ID

transportID h323Identitytransport-ID
partyNumber h323IdentitypartyNumber
mobileUIM h323IdentitymobileUIM

8.3.1 h323IdentityGKDomain

OID: 0.0.8.350.1.1.3.1.1
attributetypes: (0.0.8.350.1.1.3.1.1
NAME ’h323IdentityGKDomain’
DESC ’FQDN of the Gatekeeper’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: Specifies the FQDN name or IP address of the gatekeeper
to which the endpoint should register. Where endpoint gatekeeper location
is configured via H323 URL, please note that this attribute will not hold
an H.323 URL with a scheme name but will hold a valid DNS domain
name. If an endpoint is provisioned for its Gatekeeper location with only
a valid DNS domain name it is assumed that this DNS domain name is
the value of the hostport of the H.323 URL. H.323 Annex O section O.8.2
describes this special case. In particular, the endpoint will attempt to

38

retrieve from the specified domain name value an SRV record indicating
the gatekeeper(s) address. If the SRV lookup fails, then the endpoint will
attempt to retrieve an A record. H.323 Annex O describes the flow of the
lookup process in section O.9.

Number of Values: multi

Indexing Profile: No recommendation

Example Application Using Attribute: A web page that displays a user’s
proper endpoint configuration information.

Example (LDIF fragment): h323IdentityGKDomain: gk.radvision.com //
FQDN example
h323IdentityGKDomain: 1.1.1.1 // IP address example

8.3.2 h323Identityh323-ID

OID: 0.0.8.350.1.1.3.1.2
attributetypes: (0.0.8.350.1.1.3.1.2
NAME ’h323Identityh323-ID’
DESC ’specifies the endpoint address alias as specified in H.323’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: The endpoint’s h323-ID alias as defined in ITU-T H.225.
This is one of the dialling attributes defined by H.323. (This field is often
incorrectly referred to as ’alias’ or ’user name’ in many endpoints on the
market.)

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: white pages, directory of directo-
ries, a web page that displays a user’s correct configuration information.

Example (LDIF fragment): h323Identityh323-ID: johnsmith
h323Identityh323-ID: conferenceroom201

8.3.3 h323IdentitydialedDigits

OID: 0.0.8.350.1.1.3.1.3
attributetypes: (0.0.8.350.1.1.3.1.3
NAME ’h323IdentitydialedDigits’
DESC ’Specifies the endpoint dialled digits as specified in H.323’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

39

Definition & Use: The endpoint’s H.323 dialedDigits alias as defined in ITU-
T H.225. This is one of the dialling attributes defined by H.323. (This
field is often incorrectly referred to as ’extension’, ’E164’ or ’user number’
in many endpoints on the market.)

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: white pages, directory of directo-
ries, a web page that displays a user’s correct configuration information.

Example (LDIF fragment): h323IdentitydialedDigits: 2266126

8.3.4 h323Identityemail-ID

OID: 0.0.8.350.1.1.3.1.4
attributetypes: (0.0.8.350.1.1.3.1.4
NAME ’h323Identityemail-ID’
DESC ’Specifies an H.323 entity that can be reached using H.323’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: The endpoint’s H.323 email-ID alias as defined in ITU-T
H.225. This is one of the dialing attributes defined by H.323. In some
implementations it may be possible to have this field refer to the com-
mOwner’s email address in the enterprise directory.

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: white pages, directory of directo-
ries, a web page that displays a user’s correct configuration information.

Example (LDIF fragment): h323Identityemail-ID: user@university.edu

8.3.5 h323IdentityURL-ID

OID: 0.0.8.350.1.1.3.1.5
attributetypes: (0.0.8.350.1.1.3.1.5
NAME ’h323IdentityURL-ID’
DESC ’H.323 specs’
EQUALITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

40

Definition & Use: The endpoint’s H.323 URL-ID alias as defined in ITU-T
H.323 version 4. This is one of the dialing attributes defined by H.323.
The H.323 URL has the general form of user@hostport where either both
of the parts (i.e. user and host) or only one of the parts (i.e. user
alone or @host alone) is present. The user part corresponds to an H.323
user or service name. The host part is a legal numeric IP address or
a fully qualified domain name, thus providing means for address reso-
lution using the DNS infrastructure. Examples include h323:9198437008,
h323:dumbledore@gatekeeper.hsww.edu, h323:dumbledore@152.2.2.203, etc.
Note that this dialing mechanism is expected to become the preferred ad-
dressing scheme for H.323.

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: white pages, directory of directo-
ries, a web page that displays a user’s correct configuration information.

Example (LDIF fragment): h323IdentityURL-ID: h323:dumbledore@gatekeeper.hsww.edu

8.3.6 h323IdentitytransportID

OID: 0.0.8.350.1.1.3.1.6
attributetypes: (0.0.8.350.1.1.3.1.6
NAME ’h323IdentitytransportID’
DESC ’specifies endpoint transport Id as defined in H.323’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: The endpoint’s H.323 transport ID as defined in ITU-T
H.225. This is one of the dialing attributes defined by H.323.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): h323IdentitytransportID: 161.58.151.216

8.3.7 h323IdentitypartyNumber

OID: 0.0.8.350.1.1.3.1.7
attributetypes: (0.0.8.350.1.1.3.1.7
NAME ’h323IdentitypartyNumber’
DESC ’endpoint party Number as defined in H.323’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

41

Definition & Use: The endpoint’s H.323 partyNumber alias as defined in
ITU-T H.225. This is one of the dialing attributes defined by H.323.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): h323IdentitypartyNumber: 2266126

8.3.8 h323IdentitymobileUIM

OID: 0.0.8.350.1.1.3.1.8
attributetypes: (0.0.8.350.1.1.3.1.8
NAME ’h323IdentitymobileUIM’
DESC ’endpoint mobile UIM as defined in H.323 document’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: The endpoint’s H.323 mobileUIM alias as defined in ITU-
T H.225. This is one of the dialing attributes defined by H.323.

Number of Values: multi

Indexing Profile: equality

8.3.9 h323IdentityEndpointType

OID: 0.0.8.350.1.1.3.1.9
attributetypes: (0.0.8.350.1.1.3.1.9
NAME ’h323IdentityEndpointType’
DESC ’The endpoint H.323 type as defined in ITU-T H.323v4.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: Describes the type of endpoint as defined in H.323. Values
must be one of the following: (1) terminal, (2) mcu, or (3) gateway. This
attribute can be used to search the directory for the presence of MCUs,
gateways or terminals by searching for the presence of attributes of this
type.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): h323IdentityEndpointType:gateway

42

8.3.10 h323IdentityServiceLevel

OID: 0.0.8.350.1.1.3.1.10
attributetypes: (0.0.8.350.1.1.3.1.10
NAME ’h323IdentityServiceLevel’
DESC ’To define services that a user can belong to.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: Describes the class of service a user belongs to. This at-
tribute is outside the scope of H.323 and thus can be populated with class
definitions meaningful only to the person who invented those definitions.
There should be no expectation of interoperability.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): h323IdentityServiceLevel:deluxe

8.4 h235Identity (H.350.2)

OID: 0.0.8.350.1.1.4.2.1
objectclasses: (0.0.8.350.1.1.4.2.1
NAME ’h235Identity’
DESC ’h235Identity object’
SUP top AUXILIARY
MAY (h235IdentityEndpointID $ h235IdentityPassword $
userCertificate $ cACertificate $ authorityRevocationList $
certificateRevocationList $ crossCertificatePair)
)

Definition & Use: This object class is used to represent H.235 (the security
profiles associated with H.323) elements. It is an auxiliary class related
to H.350 and implementers should review H.350 in detail. The attributes
of h235Identiy include H.235 identity, password and certificate elements.
These elements can be downloaded to an endpoint for automatic configura-
tion or accessed by a gatekeeper for call signaling and authentication. The
h235Identity object class defines two attributes, h235IdentityEndpointID
and h235IdentityPassword, which are needed to implement H.235 Annex
D. The remaining attributes that are used, and which are already de-
fined in LDAP, are needed to be able to implement H.235 Annex E. Those
attributes are userCertificate, cACertificate, authorityRevocationList, cer-
tificateRevocationList, and crossCertificatePair. The definitions and pur-
pose of each of those attributes are defined in IETF RFC2256. In practice,
there will always be one and only one h235dentityEndpointID attribute for
every endpoint. For applications where the endpoint authenticates against

43

an LDAP directory, this value may be equal to the commUniqueId value
defined in the H.350 document.

8.4.1 h235IdentityEndpointID

OID: 0.0.8.350.1.1.4.1.1
attributetypes: (0.0.8.350.1.1.4.1.1
NAME ’h235IdentityEndpointID’
DESC ’The Sender ID as defined in ITU-H235.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: The endpoint’s senderID as defined in ITU-H235. This is
always identical to endpointID.

Number of Values: multi

Indexing Profile: No recommendation

Example (LDIF fragment): h235IdentityEndpointID: johnsmith

8.4.2 h235IdentityPassword

OID: 0.0.8.350.1.1.4.1.2
attributetypes: (0.0.8.350.1.1.4.1.2
NAME ’h235IdentityPassword’
DESC ’The endpoint password as defined in ITU-H325.’
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)

Definition & Use: The endpoint’s H.323 password as defined in ITU-T H.235.
In practice, there will always be one and only one h235IdentityPassword
attribute for every endpoint. If the password is stored in LDAP in en-
crypted format, then the LDAP encryption algorithm should match the
encryption algorithm for the gatekeeper and endpoint, i.e. the gatekeeper
and endpoint should support the same encryption format as the LDAP
server, even as systems are upgraded over time. This is so the endpoint
and gatekeeper may derive the unencrypted password in order to perform
H.235 Annex D operations. Since this may not always be possible, the
password may be stored in LDAP in an unencrypted fashion. In this case,
whenever the password is read by a gatekeeper or endpoint, that com-
munication should be transacted over a secure transport mechanism, e.g.
TLS. (See further discussion in Chapter XX on Authentication)

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): h235IdentityPassword: 36zxJmCIB18dM0FVAj

44

8.5 h320Identity (H.350.3)

OID: 0.0.8.350.1.1.5.2.1
objectclasses: (0.0.8.350.1.1.5.2.1
NAME ’h320Identity’
DESC ’h320Identity object’
SUP top AUXILIARY
MAY (h320IdentityCC $ h320IdentityNDC $ h320IdentitySN $
h320IdentityServiceLevel $ h320IdentityExtension)
)

Definition & Use: The h320Identity object class represents H.320 terminals.
It is an auxiliary class and is derived from the commObject class derived in
H.350. Implementers should review H.350 in detail. The only attribute is
described is the GSTN address of the terminal. Note that in this architec-
ture an international public telecommunications number is broken down
into its component parts of CC+NDC+SN as defined in E.164. These
addresses can be downloaded to an endpoint for automatic configuration
or published to white pages to create user dialing directories.

8.5.1 h320IdentityCC

OID: 0.0.8.350.1.1.5.1.1
attributetypes: (0.0.8.350.1.1.5.1.1
NAME ’h320IdentityCC’
DESC ’Country Code’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{3}
)

Definition & Use: Country Code portion of the terminal address as defined
in E.164. May also be used for voice numbers.

Number of Values: multi

Indexing Profile: presence, equality, sub

Example Application Using Attribute: A white pages directory that dis-
plays a user’s ISDN visual telephone address.

Example (LDIF fragment): h320IdentityCC: 1

8.5.2 h320IdentityNDC

OID: 0.0.8.350.1.1.5.1.4
attributetypes: (0.0.8.350.1.1.5.1.4
NAME ’h320IdentityNDC’
DESC ’National Destination Code’
EQUALITY caseIgnoreIA5Match

45

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{15}
)

Definition & Use: National Destination Code portion of the terminal address
as defined in E.164. May also be used for voice numbers. For example, in
the US, the NDC is the area code.

Number of Values: multi

Example Application Using Attribute: A white pages directory that dis-
plays a user’s ISDN visual telephone address.

Example (LDIF fragment): h320IdentityNDC: 919

Indexing Profile: presence, equality, sub

8.5.3 h320IdentitySN

OID: 0.0.8.350.1.1.5.1.5
attributetypes: (0.0.8.350.1.1.5.1.5
NAME ’h320IdentitySN’
DESC ’Subscriber Number’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{15}
)

Definition & Use: Subscriber Number portion of the terminal address as de-
fined in E.164. May also be used for voice numbers.

Number of Values: multi

Example Application Using Attribute: A white pages directory that dis-
plays a user’s ISDN visual telephone address.

Example (LDIF fragment): h320IdentitySN: 1234567

Indexing Profile: presence, equality, sub

8.5.4 h320IdentityExtension

OID: 0.0.8.350.1.1.5.1.3
attributetypes: (0.0.8.350.1.1.5.1.3
NAME ’h320IdentityExtension’
DESC ’Extension of terminal required to dial after initial PSTN

address is connected.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{120}
)

46

Definition & Use: Specifies an optional extension to be dialled after the PSTN
address. May also be used for voice numbers. This attribute can accom-
modate non-numeric characters, allowing for automatic dialling of exten-
sions. For example, an extension of 1234 that is reachable via Interactive
Voice Response, followed by a pound sign, could be represented as ,1234#
where the comma indicates the automatic dialler should pause, and the
pound sign indicates end of dial string to the IVR. The specific function of
digits and characters is not defined here. Note that if the CC+NDC+SN
address terminates in a gateway to an IP network, it may be desirable to
dial a valid IP address or URL for call completion on the Internet.

Number of Values: multi

Indexing Profile: presence, equality, sub

Example Application Using Attribute: A white pages directory that dis-
plays a user’s ISDN visual telephone address, including instructions for
dialling through an IVR.

Example (LDIF fragment): h320IdentityExtension: 71002
h320IdentityExtension: ,1234#
h320IdentityExtension: h323:user@gatekeeper.foo.com
h320IdentityExtension: 127.0.0.1

8.5.5 h320IdentityServiceLevel

OID: 0.0.8.350.1.1.5.1.2
attributetypes: (0.0.8.350.1.1.5.1.2
NAME ’h320IdentityServiceLevel’
DESC ’To define services that a user can belong to.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

Definition & Use: This describes the type of services a user can belong to.
This attribute does not represent a data element found in H.320. Instead,
it provides a mechanism for the storage of locally meaningingful autho-
rization information directly in LDAP. For larger applications it may be
desirable to ignore this attribute and instead utilize an external authoriza-
tion server

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: Specifying whether certain termi-
nals are authorized to make MCU calls.

Example (LDIF fragment): h320IdentityServiceLevel: premium

47

8.6 sipIdentity (H.350.4)

OID: 0.0.8.350.1.1.6.2.1
objectclasses: (0.0.8.350.1.1.6.2.1
NAME ’SIPIdentity’
DESC ’SIPIdentity object’
SUP top AUXILIARY
MAY (SIPIdentitySIPURI $ SIPIdentityRegistrarAddress $
SIPIdentityProxyAddress $ SIPIdentityUserName $
SIPIdentityPassword $ SIPIdentityServiceLevel $
userSMIMECertificate)
)

Definition & Use: The SIPIdentity object class represents SIP User Agents
(UAs). It is an auxiliary class and is derived from the commObject class
and is used to represent SIP User Agents (UAs) on the network and asso-
ciate those endpoints with users.

8.6.1 SIPIdentitySIPURI

OID: 0.0.8.350.1.1.6.1.1
attributetypes: (0.0.8.350.1.1.6.1.1
NAME ’SIPIdentitySIPURI’
DESC ’Universal Resource Indicator of the SIP UA’
EQUALITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: Uniform Resource Identifier that identifies a communica-
tion resource in SIP- usually contains a user name and a host name and
is often similar in format to an email address. This URI may institute
SIP or SIPS (secure). In the event that SIPS is instituted, the URI must
reflect that it is using SIPS as opposed to SIP. See Examples below.

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: Online representation of most cur-
rent listing of a user’s SIP(S) UA.

Example (LDIF fragment): SIPIdentitySIPURI: sip:alice@foo.com // SIP
example
SIPIdentitySIPURI: sip:alice@152.2.158.212 // SIP example
SIPIdentitySIPURI: sips:bob@birmingham.edu // SIPS example

48

8.6.2 SIPIdentityRegistrarAddress

OID: 0.0.8.350.1.1.6.1.2
attributetypes: (0.0.8.350.1.1.6.1.2
NAME ’SIPIdentityRegistrarAddress’
DESC ’specifies the location of the registrar’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: Address for the domain to which the server that handles
REGISTER requests and forwarding to the location server for a particular
domain belongs. Note that RFC 3261 states that user agents can discover
their registrar address by configuration, using the address-of-record, or by
multicast. The first scenario, by configuration, is noted as out of scope
for RC 3261. This attribute may be used for the first scenario. It can
be accomplished manually, (e.g. a web page that displays a user’s correct
registrar address) or automatically with an H.350.4 aware user agent.

Number of Values: multi

Example Application Using Attribute: white pages, a web page that dis-
plays a user’s correct configuration information.

Example (LDIF fragment): SIPIdentityRegistrarAddress: 152.2.15.22 //IP
address example
SIPIdentityRegistrarAddress: sipregistrar.unc.edu //FQDN example

Indexing Profile: no recommendation

8.6.3 SIPIdentityProxyAddress

OID: 0.0.8.350.1.1.6.1.3
attributetypes: (0.0.8.350.1.1.6.1.3
NAME ’SIPIdentityProxyAddress’
DESC ’Specifies the location of the SIP Proxy’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: Address that specifies the domain location of SIP proxy
within a domain. RFC 3261 defines the role of the SIP proxy. SIP User
Agents are not required to use a proxy, but will in many cases.

Number of Values: multi

Example Application Using Attribute: white pages, a web page that dis-
plays a user’s correct configuration information.

Example (LDIF fragment): SIPIdentityProxyAddress: 172.2.13.234 //IP ad-
dress example
SIPIdentityProxyAddress: sipproxy.unc.edu //FQDN example

49

Indexing Profile: no recommendation

8.6.4 SIPIdentityAddress

OID: 0.0.8.350.1.1.6.1.4
attributetypes: (0.0.8.350.1.1.6.1.4
NAME ’SIPIdentityAddress’
DESC ’IP address or FQDN of the UA’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: Specifies the IP address or fully qualified domain name of
the UA. This attribute may be useful for applications in which UA to UA
communication is direct, not involving a proxy or registrar.

Number of Values: multi

Example Application Using Attribute: A web page that displays a user’s
proper user agent configuration information.

Example (LDIF fragment): SIPIdentityAddress: 152.2.121.36 // IP address
example
SIPIdentityAddress: ipPhone.foo.org // FQDN example

Indexing Profile: equality

8.6.5 SIPIdentityPassword

OID: 0.0.8.350.1.1.6.1.5
attributetypes: (0.0.8.350.1.1.6.1.5
NAME ’SIPIdentityPassword’
DESC ’The user agent SIP password ’
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)

Definition & Use: The SIP user agent’s password, used for the HTTP di-
gest authentication scheme as defined in RFC 2617. Because RFC 2069,
which was made obsolete by RFC 2617, was used as the basis for HTTP
Digest in RFC 2543, any SIP servers supporting RFC 2617 must ensure
backward compatibility with RFC 2069. SIPIdentityUserName, together
with SIPIdentityPassword, are reserved for the purpose of use with Digest
Access Authentication, and not intended for use with Basic Authentica-
tion methods. LDAP provides one method to store user passwords for
reference. If passwords are stored in LDAP it makes the LDAP server a
particularly valuable target for attack. Implementers are encouraged to
exercise caution and implement appropriate security procedures such as
encryption, access control, and transport layer security for access to this
attribute. (See further discussion in chapter on Authentication)

50

Number of Values: multi

Indexing Profile: no recommendation

Example (LDIF fragment): SIPIdentityPassword: 36zxJmCIB18dM0FVAj

8.6.6 SIPIdentityUserName

OID: 0.0.8.350.1.1.6.1.6
attributetypes: (0.0.8.350.1.1.6.1.6
NAME ’SIPIdentityUserName’
DESC ’The user agent user name.’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: The SIP user agent’s user name, used for the HTTP digest
authentication scheme as defined in RFC 2617. Note that in many cases
the user name will be parsed from the user@proxy.domain portion of the
SIP URI. In that case it may not be necessary to populate this attribute.
Because RFC 2069, which was made obsolete by RFC 2617, was used as
the basis for HTTP Digest Authentication in RFC 2543, any SIP servers
supporting HTTP Digest Authentication as defined in RFC 2617 must en-
sure backward compatibility with RFC 2069. This SIPIdentityUserName,
together with SIPIdentityPassword, are reserved for the purpose of use
with Digest Access Authentication, and not intended for use with Basic
Authentication methods.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): SIPIdentityUserName: nelkhour

8.6.7 SIPIdentityServiceLevel

OID: 0.0.8.350.1.1.6.1.7
attributetypes: (0.0.8.350.1.1.6.1.7
NAME ’SIPIdentityServiceLevel’
DESC ’To define services that a user can belong to.’
EQUALITY caseIgnoreIA5Match
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Definition & Use: This describes the level of services a user can belong to.
This attribute does not represent a data element found in SIP; SIP itself
does not support distinctions in service levels. Instead, this attribute
provides a mechanism for the storage of locally meaningful service level

51

information directly in LDAP. This mapping allows service providers to
adapt to an existing LDAP directory without changing the values of the
SIPIdentityServiceLevel instances in the directory.

Number of Values: multi

Indexing Profile: equality

Example (LDIF fragment): SIPIdentityServiceLevel: premium

8.7 genericIdentity (H.350.5 Directory Services for Non-
Standard Protocols)

OID: 0.0.8.350.1.1.7.2.1
objectclasses: (0.0.8.350.1.1.7.2.1
NAME ’genericIdentity’
DESC ’genericIdentity object’
SUP top AUXILIARY
MAY (genericIdentityProtocolIdentifier $ genericIdentityMessage)
)

Definition & Use: The genericIdentity object class represents other multime-
dia conferencing information associated with a person or resource. It is
an auxiliary class and is related to the commObject class and . imple-
menters should review H.350 in detail. The particular user or resource
with which an endpoint is associated via commOwner takes on special im-
portance, as that may represent contact information required for further
information in the use of the particular endpoint. If specific attributes
such as IP address or URIs are necessary to support this endpoint type,
then the standard attributes defining IP address and URI should be used.
Keep in mind that in a directory of directories scenario, external searches
will only be aware of the genericIdentity attributes and will not know to
display IP address or URI. Standardized protocols should not extend and
use genericIdentity but should instead create and standardize their own
protocol-specific auxiliary classes as new contributions to the H.350 series
of recommendations.

8.7.1 genericIdentityProtocolIdentifier

OID: 0.0.8.350.1.1.7.1.1
attributetypes: (0.0.8.350.1.1.7.1.1
NAME ’genericIdentityProtocolIdentifier’
DESC ’name of the non-standard protocol’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

52

Definition & Use: Text string indicating the name of the non-standard mul-
timedia conferencing services represented by this endpoint that are not
H.323, H.320, or SIP; for example: MPEG2, VRVS, Access Grid or other
IP Multicast service; Instant Messaging Service

Number of Values: multi

Indexing Profile: equality

Example Application Using Attribute: Search for endpoints that support
a specific non-standard protocol. Could be used to locate users of the
Access Grid.

Example (LDIF fragment): genericIdentityProtocolIdentifier: ’MPEG2’ //MPEG2
endpoint
genericIdentityProtocolIdentifier: ’AccessGrid’ //AG user
genericIdentityProtocolIdentifier: ’VRVS’ //VRVS user

8.7.2 genericIdentityMessage

OID: 0.0.8.350.1.1.7.1.2
attributetypes: (0.0.8.350.1.1.7.1.2
NAME ’genericIdentityMessage’
DESC ’informative text string’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Definition & Use: Informative text string containing information about mul-
timedia conferencing capabilities of the associated user and/or location of
the service. This information may include instructions, other connection
information, or pointers to specific documentation.

Number of Values: multi

Indexing Profile: no recommendation

Example (LDIF fragment): genericIdentityMessage: ’see www.foo.com/mpeg2
for connection instructions’
genericIdentityMessage: ’see www.vrvs.org for subscription and bridging
instructions’

8.8 LDIF Files

8.8.1 About LDIF Files

All of the LDIF files not included with the Directory Servers or available else-
where can be found here.

53

http://metric.it.uab.edu/vnet/documents/ldif/index.html

8.8.2 LDIF for commObjectURI

commURI (H.350) is a pointer and method to link people or resources to their
multimedia conferencing elements.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.3 LDIF for commObject

commObject (H.350) is a generic super class object class from which other
protocol specific object classes derive their basic and general functionality.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.4 LDIF for h323Identity

H.350.1 is derived from H.350 and defines the h323Identity object class which
represents H.323 protocol elements.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.5 LDIF for h235Identity

H.350.2 is derived from H.350 and defines the h235Identity object class which
represents H.235 protocol elements. This is typically used in conjunction with
h323Identity or h320Identity to represent security elements.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.6 LDIF for h320Identity

H.350.3 is derived from H.350 and defines the h320Identity object class which
represents H.320 protocol elements.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.7 LDIF for SIPIdentity

H.350.4 is derived from H.350 and defines the sipIdentity object class which
represents SIP protocol elements.

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

54

http://metric.it.uab.edu/vnet/documents/ldif/commURI.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/commURI.schema
http://metric.it.uab.edu/vnet/documents/ldif/commObject.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/commObject.schema
http://metric.it.uab.edu/vnet/documents/ldif/h323Identity.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/h323Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/h235Identity.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/h235Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/h320Identity.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/h320Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/sipIdentity.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/sipIdentity.schema

8.8.8 LDIF for genericIdentity

LDIF file (for SunOne / iPlanet Directory Servers)
LDIF file (for OpenLDAP Directory Servers)

8.8.9 LDIF for inetOrgperson

LDIF file (for SunOne / iPlanet Directory Servers) - This file is
included with the Directory Server

LDIF file (for OpenLDAP Directory Servers) - This file is in-
cluded with the Directory Server

8.8.10 LDIF for eduPerson

LDIF file (for SunOne / iPlanet Directory Servers) - You can
obtain this file from Educause.

LDIF file (for OpenLDAP Directory Servers)

9 Installing and Configuring your Directory Server:
Sun ONE (iPlanet) Directory Server

9.1 Installing the Sun ONE (iPlanet) Directory Server

9.1.1 Notes

• The names ’iPlanet’ and ’Sun ONE’ can be used interchangeably (and
are used so by Sun) in most cases. The directory server software began
under the name ’iPlanet’ and has since moved to ’Sun ONE’ under new
management. Detailed documents can always be found at Sun One.

• This cookbook and the guide found at Sun ONE are not applicable to the
iPlanet Directory Server that is pre-installed on the Solaris[tm] 9 Operat-
ing System. Please refer the the System Administration Guide: Naming
and Directory Services, Vol. 5 for more information on configuring the
pre-installed iPlanet Directory Server.

• The iPlanet server can be run on a 64-bit Solaris[tm] 8 environment, but
will only run as a 32-bit process and will be limited to 3.7GB of process
memory.

• The iPlanet server will not run on SPARCv8 or earlier chipsets.

• The number of concurrent connections available to the iPlanet Directory
Server is limited by the maximum file descriptor table size setting in So-
laris[tm]. The variable rlim fd max in /etc/system specifies this setting.
The value can be changed (or added if it does not already exist) up to
4096 by manually editing the file and rebooting the server. Values above

55

http://metric.it.uab.edu/vnet/documents/ldif/genericIdentity.ldif.txt
http://metric.it.uab.edu/vnet/documents/ldif/genericIdentity.schema
http://www.educause.edu/eduperson
http://metric.it.uab.edu/vnet/documents/ldif/eduperson.schema
http://docs.sun.com/db/coll/S1_ipDirectoryServer_51
http://docs.sun.com/
http://docs.sun.com/

4096 may cause stability problems and should not be attempted without
contacting a Sun Solaris support representative.

9.1.2 Requirements

• Sun Solaris[tm] 9 or 8 Operating Environments (SPARC r© Platform Edi-
tion)

• At least 2GB for minimal install

• Roughly 4GB or greater for large directories

• At least 256 MB of RAM for minimal install

• Roughly 256 MB to 1 GB or RAM for large directories

• The server must have a static IP Address

• DNS must be properly configured on the server

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories.

9.1.3 Components

• Directory Server

– This is the actual LDAP directory server.

• Administration Server

– This is a common front-end to access the all iPlanet servers including
the iPlanet Directory server.

• Administration Console

– This is a common user interface which uses the administration server
to communicate with the directory server.

9.1.4 Installation Decisions

There are several decisions one must make prior to installing the Sun ONE
Directory Server 5.1.

• Installation Location

• System User

– The Sun ONE directory server instance will run as this user.

• System Group

56

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

– The Sun ONE directory server instance will run as this group.

• Administrator Identification

– The administration console requires this login.

• Administrator Password

– The password for the administrator identification.

• Suffix

– The suffix is the root of your tree.

• Directory Manager DN

– The administrative user used for some directory services

• Directory Manager Password

– The password for the administrative user.

• Administration Domain

– A part of the configuration directory used to store information about
Sun ONE software

• Disable Schema Checking

• Administration Port

– The port on which to run the administration server.

• Run Administration Server As

– The user under which to run the administration server.

9.1.5 Installation

(1) Download the latest SunOne Directory Server installation file for Solaris.
(2) Make a directory in which to uncompress the installation file.
(3) The tar file supplied does not automatically expand into a single direc-

tory.
(4) Move the file into the installation directory.
(5) Change directories into the installation directory.
(6) Expand the installation file with ’gunzip <installation file>’ and then

’tar xvf <ungziped file>’.
(7) If you are not already the root user, please switch to the root user.
(8) Run the ’./idsktune’ utility that was expanded from the installation file.

Make any necessary changes issued by idsktune.

57

http://wwws.sun.com/software/products/directory_srvr/home_directory.html

(9) Run the setup file with ’./setup’ from the created directory.
(10) Press ’Enter’ when asked if you would like to continue with the instal-

lation.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Welcome to the iPlanet Server Products installation program
This program will install iPlanet Server Products and the
iPlanet Console on your computer.
It is recommended that you have ”root” privilege to install the
software.
Tips for using the installation program:
- Press ”Enter” to choose the default and go to the next screen
- Type ”Control-B” to go back to the previous screen
- Type ”Control-C” to cancel the installation program
- You can enter multiple items using commas to separate them.
For example: 1, 2, 3
Would you like to continue with installation? [Yes]:

(11) If you agree to the terms of the license, type ’Yes’ and press ’Enter’.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
BY INSTALLING THIS SOFTWARE YOU ARE CONSENT-

ING TO BE BOUND BY
AND ARE BECOMING A PARTY TO THE AGREEMENT

FOUND IN THE
LICENSE.TXT FILE. IF YOU DO NOT AGREE TO ALL OF

THE TERMS
OF THIS AGREEMENT, PLEASE DO NOT INSTALL OR

USE THIS SOFTWARE.
Do you agree to the license terms? [No]:

(12) To install the Sun ONE Server, type ’1’ and press ’Enter’.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Select the items you would like to install:
1. iPlanet Servers
Installs iPlanet Servers with the integrated iPlanet Console
onto your computer.
2. iPlanet Console
Installs iPlanet Console
as a stand-alone Java application on your computer.

58

To accept the default shown in brackets, press the Enter key.
Select the component you want to install [1]:

(13) Choose the custom installation by typing ’3’ and pressing ’Enter’.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Choose an installation type:
1. Express installation
Allows you to quickly install the servers using the most
common options and pre-defined defaults. Useful for quick
evaluation of the products.
2. Typical installation
Allows you to specify common defaults and options.
3. Custom installation
Allows you to specify more advanced options. This is
recommended for experienced server administrators only.
To accept the default shown in brackets, press the Enter key.
Choose an installation type [2]:

(14) Type in the location you wish to install the server and press ’Enter’ or
just press ’Enter’ to select the default location. The directory must not exist
on a networked drive. The directory must be empty or must not exist. The
directory must not be the same directory from which you are installing.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
This program will extract the server files and install them
into a directory you specify. That directory is called the
server root in the product documentation and will contain
the server programs, the Administration Server, and the server
configuration files.
To accept the default shown in brackets, press the Enter key.
Install location [/usr/iplanet/servers]:

(15) Specify the components you wish to install by typing them in a comma
delimited list or just press ’Enter’ to install all of the components. It is recom-
mended that you install all of the components.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
iPlanet Server Products components:
Components with a number in () contain additional subcompo-

nents

59

which you can select using subsequent screens.
1. Server Core Components (3)
2. iPlanet Directory Suite (2)
3. Administration Services (2)
Specify the components you wish to install [All]:

(16) Specify the server core components you wish to install by typing them
in a comma delimited list or just press ’Enter’ to install all of the components.
It is recommended that you install all of the components.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Server Core Components components:
Components with a number in () contain additional subcompo-

nents
which you can select using subsequent screens.
1. Server Core Components
2. Core Java classes
3. Java Runtime Environment
Specify the components you wish to install [1, 2, 3]:

(17) Specify the Sun ONE directory suite components you wish to install by
typing them in a comma delimited list or just press ’Enter’ to install all of the
components. It is recommended that you install all of the components.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
iPlanet Directory Suite components:
Components with a number in () contain additional subcompo-

nents
which you can select using subsequent screens.
1. iPlanet Directory Server
2. iPlanet Directory Server Console
Specify the components you wish to install [1, 2]:

(18) Specify the administration services components you wish to install by
typing them in a comma delimited list or just press ’Enter’ to install all of the
components. It is recommended that you install all of the components.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Administration Services components:
Components with a number in () contain additional subcompo-

nents

60

which you can select using subsequent screens.
1. iPlanet Administration Server
2. Administration Server Console
Specify the components you wish to install [1, 2]:

(19) Enter the fully qualified domain name of your computer or just press
’Enter’ to select the default shown in brackets.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Enter the fully qualified domain name of the computer
on which you’re installing server software. Using the form
.
Example: eros.airius.com.
To accept the default shown in brackets, press the Enter key.
Computer name [localhost.localdomain]:

(20) Type the name of the user you wish to run the server or just press enter
to select the default user ’nobody’.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Choose a Unix user and group to represent the iPlanet server
in the user directory. The iPlanet server will run as this user.
It is recommended that this user should have no privileges
in the computer network system. The Administration Server
will give this group some permissions in the server root
to perform server-specific operations.
If you have not yet created a user and group for the iPlanet
server,create this user and group using your native UNIX
system utilities.
To accept the default shown in brackets, press the Return key.
System User [nobody]:

(21) Type the name of the group you wish to run the server or just press
enter to select the default group ’nobody’.

Sun-Netscape Alliance
iPlanet Server Products Installation/Uninstallation
——————————————————————————-
Choose a Unix user and group to represent the iPlanet server
in the user directory. The iPlanet server will run as this user.
It is recommended that this user should have no privileges
in the computer network system. The Administration Server
will give this group some permissions in the server root

61

to perform server-specific operations.
If you have not yet created a user and group for the iPlanet
server,create this user and group using your native UNIX
system utilities.
To accept the default shown in brackets, press the Return key.
System User [nobody]:
System Group [nobody]:

(22) Type the name of the administrator you wish to configure for Sun ONE
or just press ’Enter’ to select the default ’admin’.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
In order to reconfigure your installation, the Configuration Di-

rectory
Administrator password is required. Here is your current infor-

mation:
Configuration Directory: ldap://localhost.localdomain:389/o=NetscapeRoot
Configuration Administrator ID: admin
At the prompt, please enter the password for the Configuration

Administrator.
iPlanet configuration directory server
administrator ID [admin]:

(23) Type the password you wish to use for the administrator account.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
In order to reconfigure your installation, the Configuration Di-

rectory
Administrator password is required. Here is your current infor-

mation:
Configuration Directory: ldap://localhost.localdomain:389/o=NetscapeRoot
Configuration Administrator ID: admin
At the prompt, please enter the password for the Configuration

Administrator.
iPlanet configuration directory server
administrator ID [admin]:
Password:

(24) Retype the password for the administrator account.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-

62

Please enter the administrator ID for the iPlanet configuration
directory server. This is the ID typically used to log in to the
console. You will also be prompted for the password.
iPlanet configuration directory server
administrator ID [admin]:
Password:
Password (again):

(25) Type in the suffix (i.e. root of your directory tree) for your directory or
just press ’Enter’ to select the default in brackets.

It is very important to follow DC naming style. Please refer to A Recipe for
Configuring and Operating LDAP Directories.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
The suffix is the root of your directory tree. You may have more

than
one suffix.
Suffix [dc=localdomain]:

(26) Type in the name for the Directory Manager you wish to set up for your
directory.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
Certain directory server operations require an administrative user.
This user is referred to as the Directory Manager and typically

has a
bind Distinguished Name (DN) of cn=Directory Manager. Press

Enter to
accept the default value, or enter another DN. In either case, you
will be prompted for the password for this user. The password

must
be at least 8 characters long.
Directory Manager DN [cn=Directory Manager]:

(27) Enter a password you wish to use for your Directory Manager.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
Certain directory server operations require an administrative user.
This user is referred to as the Directory Manager and typically

has a

63

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

bind Distinguished Name (DN) of cn=Directory Manager. Press
Enter to

accept the default value, or enter another DN. In either case, you
will be prompted for the password for this user. The password

must
be at least 8 characters long.
Directory Manager DN [cn=Directory Manager]:
Password:

(28) Reenter the password you just typed for your Directory Manager.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
Certain directory server operations require an administrative user.
This user is referred to as the Directory Manager and typically

has a
bind Distinguished Name (DN) of cn=Directory Manager. Press

Enter to
accept the default value, or enter another DN. In either case, you
will be prompted for the password for this user. The password

must
be at least 8 characters long.
Directory Manager DN [cn=Directory Manager]:
Password:
Password (again):

(29) Type in the Administration Domain for your directory server or just
press ’Enter’ to select the default in brackets.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
The Administration Domain is a part of the configuration direc-

tory
server used to store information about iPlanet software. If you

are
managing multiple software releases at the same time, or man-

aging
information about multiple domains, you may use the Adminis-

tration
Domain to keep them separate.
If you are not using administrative domains, press Enter to select

the
default. Otherwise, enter some descriptive, unique name for the
administration domain, such as the name of the organization

responsible

64

for managing the domain.
Administration Domain [localdomain]:

(30) If you wish to install sample entries into your directory server, type
’Yes’ and press ’Enter’. Otherwise, just press ’Enter’ to select ’No’.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
You may install some sample entries in this directory instance.

These
entries will be installed in a separate suffix and will not interfere
with the normal operation of the directory server.
Do you want to install the sample entries? [No]:

(31) If you wish to install any information from and LDIF file at this time,
enter the full path to the file and press ’Enter’. If you would like Sun ONE
to install some suggested entries, press ’Enter’ to select the default ’suggest’.
Otherwise, just type ’none’ and press ’Enter’. It is preferable to install the
suggested entries.

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
You may wish to populate your new directory instance with some

data.
You may already have a file in LDIF format to use or some sug-

gested
entries can be added. If you want to import entries from an LDIF
file, you may type in the full path and filename at the prompt.

If
you want the install program to add the suggested entries, type

the
word suggest at the prompt. The suggested entries are common
container entries under your specified suffix, such as ou=People

and
ou=Groups, which are commonly used to hold the entries for the

persons
and groups in your organization. If you do not want to add any

of
these entries, type the word none at the prompt.
Type the full path and filename, the word suggest, or the word

none
[suggest]:

(32) If you wish to disable schema checking, type ’Yes’ and press ’Enter’.
Otherwise, just press ’Enter’ to select the default ’No’.

65

Sun-Netscape Alliance
Directory Installation/Uninstallation
——————————————————————————-
If you are going to import an old database immediately after or

during
installation, and you think you may have problems with your old
schema, you may want to turn off schema checking until after the
import. If you choose to do this, schema checking will remain off
until you manually turn it back on. iPlanet recommends that

you turn
it back on as soon as possible.
Do you want to disable schema checking? [No]:

(33) Enter the adminstration port or press enter to select the default.

Sun-Netscape Alliance
Administration Installation/Uninstallation
——————————————————————————-
The Administration Server is separate from any of your applica-

tion
servers since it listens to a different port and access to it is
restricted.
Pick a port number between 1024 and 65535 to run your Admin-

istration
Server on. You should NOT use a port number which you plan

to
run an application server on, rather, select a number which you
will remember and which will not be used for anything else.
The default in brackets was randomly selected from the available
ports on your system. To accept the default, press return.
Administration port [6210]:

(34) Enter in the IP address of your server or press ’Enter’ to select the
default shown in brackets.

Sun-Netscape Alliance
Administration Installation/Uninstallation
——————————————————————————-
If you want to configure the Administration Server to bind
to a specific IP address, enter the address below.
To accept the default shown in brackets, press the Return key.
IP address []:

(35) Enter in the user to run the administration server or press ’Enter’ to
select the default ’root’.

66

Sun-Netscape Alliance
Administration Installation/Uninstallation
——————————————————————————-
The Administration Server program runs as a certain user on

your
system. This user should be different than the one which your
application servers run as. Only the user you select will be
able to write to your configuration files. If you run the
Administration Server as ”root”, you will be able to use the Server
Administration screen to start and stop your application servers.
Run Administration Server as [root]:

(36) The setup script should now start the directory server.

9.2 Configuring an Enterprise Directory with Sun ONE
(iPlanet) Directory Server

9.2.1 Notes

These instructions assume that you are working with a clean install of the Sun
ONE Directory Server.

9.2.2 Requirements

• A running Sun ONE Directory Server on Solaris

• A running Sun ONE Administration Server on Solaris

• A version of the Sun ONE Administration Console on Solaris

• Knowledge of the following values :

– The Installation Directory for the Sun ONE Directory Server

– The Directory Manager Distinguished Name

– The Directory Manager Password

– The Domain Name of the server

– The port number on which the Directory Server is running

• Familiarity with A Recipe for Configuring and Operating LDAP Directo-
ries.

9.2.3 Components

• Directory Server

– This is the actual LDAP directory server.

• Administration Server

67

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

– This is a common front-end to access the all iPlanet servers including
the iPlanet Directory server.

• Administration Console

– This is a common user interface which uses the administration server
to communicate with the directory server.

• EduPerson LDIF File

– This is the file that contains the schema changes necessary to support
the EduPerson object.

• commURI LDIF File

– This is the file that contains the schema changes necessary to support
the commURI object.

9.2.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
Sun ONE Directory Server Installation Directory <ldap dir> /usr/iplanet/servers

Directory Manager Distinguished Name <manager dn> cn=Directory Manager
Directory Manager Password <manager pw> password

Fully Qualified Domain Name of the Server <ldap dns> enterprise.uab.edu
Sun ONE Directory Server Port Number <ldap port> 389

Fully Qualified path to EduPerson LDIF File <edu ldif> /tmp/eduperson.ldif
Fully Qualified path to commURI LDIF File <comm ldif> /tmp/commURI.ldif.txt

9.2.5 Instructions

(1) Download the latest EduPerson LDIF file from Educause and save it locally
on your Solaris computer.

(2) Create a copy of the LDIF file and use the new file as your working copy.
(3) Open the LDIF file with a text editor.
(4) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the EduPerson schema to your directory. If you have already
added the EduPerson schema to your directory, you can skip this step so
that those previously entered values are deleted.

68

http://www.educause.edu/eduperson

• The code below was taken from the latest EduPerson schema at the time
of this writing. If there are additional attributetypes in the EduPerson
schema that you have, they will also need to be commented out of the
delete function.

delete: attributetypes
attributetypes: (1.3.6.1.4.1.5923.1.1.1.1 NAME ’eduPersonAf-

filiation’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.2 NAME ’eduPersonNick-

name’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.3 NAME ’eduPersonOrgDN’

)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.4 NAME ’eduPersonOrgU-

nitDN’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.5 NAME ’eduPersonPri-

maryAffiliation’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.6 NAME ’eduPersonPrin-

cipalName’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.7 NAME ’eduPersonEn-

titlement’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.8 NAME ’eduPersonPri-

maryOrgUnitDN’)
-

(5) The lines mentioned in the previous step should now appear as the fol-
lowing.

delete: attributetypes
attributetypes: (1.3.6.1.4.1.5923.1.1.1.1 NAME ’eduPerson-

Affiliation’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.2 NAME ’eduPerson-

Nickname’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.3 NAME ’eduPerson-

OrgDN’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.4 NAME ’eduPerson-

OrgUnitDN’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.5 NAME ’eduPerson-

PrimaryAffiliation’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.6 NAME ’eduPerson-

PrincipalName’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.7 NAME ’eduPerson-

Entitlement’)
attributetypes: (1.3.6.1.4.1.5923.1.1.1.8 NAME ’eduPerson-

PrimaryOrgUnitDN’)
-

69

(6) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the EduPerson schema to your directory. If you have already
added the EduPerson schema to your directory, you can skip this step so
that those previously entered values are deleted.

delete: objectclasses
objectclasses: (1.3.6.1.4.1.5923.1.1.2
NAME ’eduPerson’
)
-

(7) The lines mentioned in the previous step should now appear as the fol-
lowing.

delete: objectclasses
objectclasses: (1.3.6.1.4.1.5923.1.1.2
NAME ’eduPerson’
)
-

(8) Change your current working directory to be <ldap dir>/shared/bin.
(9) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <edu ldif>

(10) You should see the following feedback from the previous command.

modifying entry cn=schema

(11) The Directory Server should now be updated with the latest EduPerson
schema.

(12) Download the latest CommObject LDIF files and save them locally on
your Solaris computer.

(13) Create a copy of the commURI.ldif.txt LDIF file and use the new file
as your working copy.

(14) Open the LDIF file with a text editor.
(15) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the commObject schema to your directory. If you have already
added the commObject schema to your directory, you can skip this step
so that those previously entered values are deleted.

70

http://metric.it.uab.edu/vnet/documents/ldif/h350_LDIF.zip
http://metric.it.uab.edu/vnet/documents/ldif/commURI.ldif.txt

• The code below was taken from the latest commObject schema at the time
of this writing. If there are additional attributetypes in the commObject
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.1.1.1 NAME ’commURI’)
-

(16) The lines mentioned in the previous step should now appear as the
following.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.1.1.1 NAME ’commURI’)
-

(17) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the commObject schema to your directory. If you have already
added the commObject schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest commObject schema at the time
of this writing. If there are additional objectclasses in the commObject
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.1.2.1 NAME ’commURIObject’)
-

(18) The lines mentioned in the previous step should now appear as the
following.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.1.2.1 NAME ’commURIObject’)
-

(19) Change your current working directory to be <ldap dir>/shared/bin.
(20) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <comm ldif>

(21) You should see the following feedback from the previous command.

modifying entry cn=schema

(22) The Directory Server should now be updated with the latest commU-
RIObject schema.

71

9.3 Configuring an H.350 Directory with Sun ONE (iPlanet)
Directory Server

9.3.1 Notes

These instructions assume that you are working with a clean install of the Sun
ONE Directory Server.

9.3.2 Requirements

• A running Sun ONE Directory Server on Solaris

• A running Sun ONE Administration Server on Solaris

• A version of the Sun ONE Administration Console on Solaris

• Knowledge of the following values :

– The Installation Directory for the Sun ONE Directory Server

– The Directory Manager Distinguished Name

– The Directory Manager Password

– The Domain Name of the server

– The port number on which the Directory Server is running

• Familiarity with A Recipe for Configuring and Operating LDAP Directo-
ries.

9.3.3 Components

• Directory Server

– This is the actual LDAP directory server.

• Administration Server

– This is a common front-end to access the all iPlanet servers including
the iPlanet Directory server.

• Administration Console

– This is a common user interface which uses the administration server
to communicate with the directory server.

• commObject LDIF File

– This is the file that contains the schema changes necessary to support
the commObject object.

• h323Identity LDIF File

72

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

– This is the file that contains the schema changes necessary to support
the h323Identity object.

• h320Identity LDIF File

– This is the file that contains the schema changes necessary to support
the h320Identity object.

• h235Identity LDIF File

– This is the file that contains the schema changes necessary to support
the h235Identity object.

• sipIdentity LDIF File

– This is the file that contains the schema changes necessary to support
the sipIdentity object.

• genericIdentity LDIF File

– This is the file that contains the schema changes necessary to support
the genericIdentity object.

9.3.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
Sun ONE Directory Server Installation Directory <ldap dir> /usr/iplanet/servers

Directory Manager Distinguished Name <manager dn> cn=Directory Manager
Directory Manager Password <manager pw> password

Fully Qualified Domain Name of the Server <ldap dns> enterprise.uab.edu
Sun ONE Directory Server Port Number <ldap port> 389

Fully Qualified path to commObject LDIF File <comm ldif> /tmp/commObject.ldif.txt
Fully Qualified path to h323Identity LDIF File <h323 ldif> /tmp/h323Identity.ldif.txt
Fully Qualified path to h320Identity LDIF File <h320 ldif> /tmp/h323Identity.ldif.txt
Fully Qualified path to h235Identity LDIF File <h235 ldif> /tmp/h235Identity.ldif.txt
Fully Qualified path to sipIdentity LDIF File <sip ldif> /tmp/sipIdentity.ldif.txt

Fully Qualified path to genericIdentity LDIF File <gen ldif> /tmp/genericIdentity.ldif.txt

9.3.5 Instructions

(1) Download the latest CommObject LDIF files and save them locally on your
Solaris computer.

(2) Create a copy of the commObject.ldif.txt LDIF file and use the new file

73

http://metric.it.uab.edu/vnet/documents/ldif/h350_LDIF.zip
http://metric.it.uab.edu/vnet/documents/ldif/commObject.ldif.txt

as your working copy.
(3) Open the LDIF file with a text editor.
(4) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the commObject schema to your directory. If you have already
added the commObject schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest commObject schema at the time
of this writing. If there are additional attributetypes in the commObject
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.2.1.1 NAME ’commUniqueId’)
attributetypes: (0.0.8.350.1.1.2.1.2 NAME ’commOwner’)
attributetypes: (0.0.8.350.1.1.2.1.3 NAME ’commPrivate’)
-

(5) The lines mentioned in the previous step should now appear as the fol-
lowing.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.2.1.1 NAME ’commUniqueId’)
attributetypes: (0.0.8.350.1.1.2.1.2 NAME ’commOwner’)
attributetypes: (0.0.8.350.1.1.2.1.3 NAME ’commPrivate’)
-

(6) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the commObject schema to your directory. If you have already
added the commObject schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest commObject schema at the time
of this writing. If there are additional objectclasses in the commObject
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.2.2.1 NAME ’commObject’)
-

(7) The lines mentioned in the previous step should now appear as the fol-
lowing.

74

delete: objectclasses
objectclasses: (0.0.8.350.1.1.2.2.1 NAME ’commObject’)
-

(8) Change your current working directory to be <ldap dir>/shared/bin.
(9) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <comm ldif>

(10) You should see the following feedback from the previous command.

modifying entry cn=schema

(11) The Directory Server should now be updated with the latest commObject
schema.

(12) Create a copy of the h323Identity.ldif.txt LDIF file and use the new file
as your working copy.

(13) Open the LDIF file with a text editor.
(14) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the h323Identity schema to your directory. If you have already
added the h323Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h323Identity schema at the time
of this writing. If there are additional attributetypes in the h323Identity
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.3.1.1 NAME ’h323IdentityGKDomain’

)
attributetypes: (0.0.8.350.1.1.3.1.2 NAME ’h323Identityh323-ID’

)
attributetypes: (0.0.8.350.1.1.3.1.3 NAME ’h323IdentitydialedDigits’

)
attributetypes: (0.0.8.350.1.1.3.1.4 NAME ’h323Identityemail-

ID’)
attributetypes: (0.0.8.350.1.1.3.1.5 NAME ’h323IdentityURL-ID’

)
attributetypes: (0.0.8.350.1.1.3.1.6 NAME ’h323IdentitytransportID’

)
attributetypes: (0.0.8.350.1.1.3.1.7 NAME ’h323IdentitypartyNumber’

)

75

http://metric.it.uab.edu/vnet/documents/ldif/h323Identity.ldif.txt

attributetypes: (0.0.8.350.1.1.3.1.8 NAME ’h323IdentitymobileUIM’
)

attributetypes: (0.0.8.350.1.1.3.1.9 NAME ’h323IdentityEndpointType’
)

attributetypes: (0.0.8.350.1.1.3.1.10 NAME ’h323IdentityServiceLevel’
)

-

(15) The lines mentioned in the previous step should now appear as the
following.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.3.1.1 NAME ’h323IdentityGKDomain’

)
attributetypes: (0.0.8.350.1.1.3.1.2 NAME ’h323Identityh323-

ID’)
attributetypes: (0.0.8.350.1.1.3.1.3 NAME ’h323IdentitydialedDigits’

)
attributetypes: (0.0.8.350.1.1.3.1.4 NAME ’h323Identityemail-

ID’)
attributetypes: (0.0.8.350.1.1.3.1.5 NAME ’h323IdentityURL-

ID’)
attributetypes: (0.0.8.350.1.1.3.1.6 NAME ’h323IdentitytransportID’

)
attributetypes: (0.0.8.350.1.1.3.1.7 NAME ’h323IdentitypartyNumber’

)
attributetypes: (0.0.8.350.1.1.3.1.8 NAME ’h323IdentitymobileUIM’

)
attributetypes: (0.0.8.350.1.1.3.1.9 NAME ’h323IdentityEndpointType’

)
attributetypes: (0.0.8.350.1.1.3.1.10 NAME ’h323IdentityServiceLevel’

)
-

(16) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the h323Identity schema to your directory. If you have already
added the h323Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h323Identity schema at the time
of this writing. If there are additional objectclasses in the h323Identity
schema that you have, they will also need to be commented out of the
delete function.

76

delete: objectclasses
objectclasses: (0.0.8.350.1.1.3.2.1 NAME ’h323Identity’)
-

(17) The lines mentioned in the previous step should now appear as the
following.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.3.2.1 NAME ’h323Identity’)
-

(18) Change your current working directory to be <ldap dir>/shared/bin.
(19) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <h323 ldif>

(20) You should see the following feedback from the previous command.

modifying entry cn=schema

(21) The Directory Server should now be updated with the latest h323Identity
schema.

(22) Create a copy of the h320Identity.ldif.txt LDIF file and use the new file
as your working copy.

(23) Open the LDIF file with a text editor.
(24) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the h320Identity schema to your directory. If you have already
added the h320Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h320Identity schema at the time
of this writing. If there are additional attributetypes in the h320Identity
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.5.1.1 NAME ’h320IdentityAddress’

)
attributetypes: (0.0.8.350.1.1.5.1.2 NAME ’h320IdentityServiceLevel’

)
-

(25) The lines mentioned in the previous step should now appear as the
following.

77

http://metric.it.uab.edu/vnet/documents/ldif/h320Identity.ldif.txt

delete:attributetypes
attributetypes: (0.0.8.350.1.1.5.1.1 NAME ’h320IdentityAddress’

)
attributetypes: (0.0.8.350.1.1.5.1.2 NAME ’h320IdentityServiceLevel’

)
-

(26) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the h320Identity schema to your directory. If you have already
added the h320Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h320Identity schema at the time
of this writing. If there are additional objectclasses in the h320Identity
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.5.2.1 NAME ’h320Identity’)
-

(27) The lines mentioned in the previous step should now appear as the
following.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.5.2.1 NAME ’h320Identity’)
-

(28) Change your current working directory to be <ldap dir>/shared/bin.
(29) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <h320 ldif>

(30) You should see the following feedback from the previous command.

modifying entry cn=schema

(31) The Directory Server should now be updated with the latest h320Identity
schema.

(32) Create a copy of the h235Identity.ldif.txt LDIF file and use the new file
as your working copy.

(33) Open the LDIF file with a text editor.
(34) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

78

http://metric.it.uab.edu/vnet/documents/ldif/h235Identity.ldif.txt

• The delete function (see below) needs to be commented out if you have
not added the h235Identity schema to your directory. If you have already
added the h235Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h235Identity schema at the time
of this writing. If there are additional attributetypes in the h235Identity
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.4.1.1 NAME ’h235IdentitySenderID’

)
attributetypes: (0.0.8.350.1.1.4.1.2 NAME ’h235IdentityPassword’

)
-

(35) The lines mentioned in the previous step should now appear as the
following.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.4.1.1 NAME ’h235IdentitySenderID’

)
attributetypes: (0.0.8.350.1.1.4.1.2 NAME ’h235IdentityPassword’

)
-

(36) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the h235Identity schema to your directory. If you have already
added the h235Identity schema to your directory, you can skip this step
so that those previously entered values are deleted.

• The code below was taken from the latest h235Identity schema at the time
of this writing. If there are additional objectclasses in the h235Identity
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.4.2.1 NAME ’h235Identity’)
-

(37) The lines mentioned in the previous step should now appear as the
following.

79

delete: objectclasses
objectclasses: (0.0.8.350.1.1.4.2.1 NAME ’h235Identity’)
-

(38) Change your current working directory to be <ldap dir>/shared/bin.
(39) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <h235 ldif>

(40) You should see the following feedback from the previous command.

modifying entry cn=schema

(41) The Directory Server should now be updated with the latest h235Identity
schema.

(42) Create a copy of the sipIdentity.ldif.txt LDIF file and use the new file
as your working copy.

(43) Open the LDIF file with a text editor.
(44) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the sipIdentity schema to your directory. If you have already
added the sipIdentity schema to your directory, you can skip this step so
that those previously entered values are deleted.

• The code below was taken from the latest sipIdentity schema at the time
of this writing. If there are additional attributetypes in the sipIdentity
schema that you have, they will also need to be commented out of the
delete function.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.6.1.1 NAME ’SIPIdentitySIPURI’

)
attributetypes: (0.0.8.350.1.1.6.1.2 NAME ’SIPIdentityRegistrar-

Domain’)
attributetypes: (0.0.8.350.1.1.6.1.3 NAME ’SIPIdentityProxyDo-

main’)
attributetypes: (0.0.8.350.1.1.6.1.4 NAME ’SIPIdentityIPAddress’

)
attributetypes: (0.0.8.350.1.1.6.1.5 NAME ’SIPIdentityPassword’

)
attributetypes: (0.0.8.350.1.1.6.1.6 NAME ’SIPIdentityUserName’

)
attributetypes: (0.0.8.350.1.1.6.1.7 NAME ’SIPIdentityServiceLevel’

)
-

80

http://metric.it.uab.edu/vnet/documents/ldif/sipIdentity.ldif.txt

(45) The lines mentioned in the previous step should now appear as the
following.

delete:attributetypes
attributetypes: (0.0.8.350.1.1.6.1.1 NAME ’SIPIdentitySIPURI’

)
attributetypes: (0.0.8.350.1.1.6.1.2 NAME ’SIPIdentityRegis-

trarDomain’)
attributetypes: (0.0.8.350.1.1.6.1.3 NAME ’SIPIdentityProx-

yDomain’)
attributetypes: (0.0.8.350.1.1.6.1.4 NAME ’SIPIdentityIPAd-

dress’)
attributetypes: (0.0.8.350.1.1.6.1.5 NAME ’SIPIdentityPass-

word’)
attributetypes: (0.0.8.350.1.1.6.1.6 NAME ’SIPIdentityUser-

Name’)
attributetypes: (0.0.8.350.1.1.6.1.7 NAME ’SIPIdentitySer-

viceLevel’)
-

(46) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the sipIdentity schema to your directory. If you have already
added the sipIdentity schema to your directory, you can skip this step so
that those previously entered values are deleted.

• The code below was taken from the latest sipIdentity schema at the time
of this writing. If there are additional objectclasses in the sipIdentity
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.6.2.1 NAME ’SIPIdentity’)
-

(47) The lines mentioned in the previous step should now appear as the
following.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.6.2.1 NAME ’SIPIdentity’)
-

(48) Change your current working directory to be <ldap dir>/shared/bin.
(49) Run the following command.

81

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <sip ldif>

(50) You should see the following feedback from the previous command.

modifying entry cn=schema

(51) The Directory Server should now be updated with the latest sipIdentity
schema.

(52) Create a copy of the genericIdentity.ldif.txt LDIF file and use the new
file as your working copy.

(53) Open the LDIF file with a text editor.
(54) Comment out the following lines in the file by placing the ”#” character

in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the sipIdentity schema to your directory. If you have already
added the sipIdentity schema to your directory, you can skip this step so
that those previously entered values are deleted.

• The code below was taken from the latest sipIdentity schema at the time
of this writing. If there are additional attributetypes in the sipIdentity
schema that you have, they will also need to be commented out of the
delete function.

delete: attributetypes
attributetypes:(0.0.8.350.1.1.7.1.1 NAME ’genericIdentityProto-

colIdentifier’)
attributetypes: (0.0.8.350.1.1.7.1.2 NAME ’genericIdentityMes-

sage’)
-

(55) The lines mentioned in the previous step should now appear as the
following.

delete: attributetypes
attributetypes:(0.0.8.350.1.1.7.1.1 NAME ’genericIdentityPro-

tocolIdentifier’)
attributetypes: (0.0.8.350.1.1.7.1.2 NAME ’genericIdentityMes-

sage’)
-

(56) Comment out the following lines in the file by placing the ”#” character
in front of the lines.

• The delete function (see below) needs to be commented out if you have
not added the sipIdentity schema to your directory. If you have already
added the sipIdentity schema to your directory, you can skip this step so
that those previously entered values are deleted.

82

http://metric.it.uab.edu/vnet/documents/ldif/genericIdentity.ldif.txt

• The code below was taken from the latest sipIdentity schema at the time
of this writing. If there are additional objectclasses in the sipIdentity
schema that you have, they will also need to be commented out of the
delete function.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.7.2.1 NAME ’genericIdentity’)
-

(57) The lines mentioned in the previous step should now appear as the
following.

delete: objectclasses
objectclasses: (0.0.8.350.1.1.7.2.1 NAME ’genericIdentity’)
-

(58) Change your current working directory to be <ldap dir>/shared/bin.
(59) Run the following command.

./ldapmodify -D ”<manager dn>”-w <manager pw> -h <ldap dns>
\

-p <ldap port> -f <gen ldif>

(60) You should see the following feedback from the previous command.
(61) The Directory Server should now be updated with the latest genericI-

dentity schema.

9.4 Populating an Enterprise Directory with Sun ONE
(iPlanet) Directory Server

9.4.1 Notes

None.

9.4.2 Requirements

• A running Sun ONE Directory Server on Solaris

• A running Sun ONE Administration Server on Solaris

• A version of the Sun ONE Administration Console on Solaris

• You should know the values for the following :

– The Installation Directory for the Sun ONE Directory Server
– The Directory Manager Distinguished Name
– The Directory Manager Password
– The Domain Name of the server
– The port number on which the Directory Server is running

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories.

83

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

9.4.3 Components

• Directory Server

– This is the actual LDAP directory server.

• Administration Server

– This is a common front-end to access the all iPlanet servers including
the iPlanet Directory server.

• Administration Console

– This is a common user interface which uses the administration server
to communicate with the directory server.

9.4.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value
Sun ONE Directory Server Installation Directory <ldap dir>

Directory Manager Distinguished Name <manager dn>
Directory Manager Password <manager pw>

Fully Qualified Domain Name of the Server <ldap dns>
Sun ONE Directory Server Port Number <ldap port>

9.4.5 Instructions

(1) Run the following command from your Sun ONE Directory Server Installa-
tion Directory (<ldap dir>).

./startconsole

(2) You should now see the iPlanet Console Login window.

(3) In the User ID field, enter the Directory Manager Distinguished Name
(<manager dn>).

84

(4) In the Password field, enter the Directory Manager Password (<man-
ager pw>).

(5) In the Administration URL field, enter in the URL for the directory
server including the port number (<ldap port>).

(6) Click OK.
(7) You should now see the iPlanet Console.

85

(8) On the left-hand side of the iPlanet Console Desktop, you should see a
Java tree structure containing the name of your directory server and directly
beneath it is the distinguished name of your server (<ldap dns>).

(9) Click on the file handles in the tree to open them until you reach the
Directory Server node.

86

(10) Click on the Directory Server node.

87

(11) You should now see some basic property information about your direc-
tory server on the right-hand side of the iPlanet Console Desktop.

(12) Click on the Open button contained in the property information..
(13) You should now see your directory server open in a new iPlanet Direc-

tory Server window.

(14) Click on the Configuration tab in the iPlanet Directory Server window.

88

(15) Click on the Schema node in the Java tree structure.

89

(16) Click on the Attributes tab on the right-hand side of the iPlanet Direc-
tory Server Desktop.

• Using the iPlanet Directory Server to create new objects, you must create
the attributes, create the object, then add the attributes to the objects.

(17) Use the Create... button to add any additional attributes that your
institution may need.

(18) Click on the Object Classes tab on the right-hand side of the iPlanet
Directory Server Desktop.

• Using the iPlanet Directory Server to create new objects, you must create
the attributes, create the object, then add the attributes to the objects.

90

(19) Use the Create... button to add any additional object classes that your
institution may need.

(20) Click on the Directory tab at the top of the iPlanet Directory Server
Desktop.

91

(21) Open your directory data to the Organizational Unit People by navi-
gating to it in the Java tree structure.

92

(22) Right click on the People Organizational Unit.

93

(23) Navigate accordingly to create a new user.

94

(24) Enter all necessary information into the form to create a new individual.

95

(25) Click on the Advanced... button.

(26) Click on the Object Class attribute.

96

(27) Click on Add Value under the Edit heading.

97

(28) Add the EduPerson object class to the person by selecting the EduPer-
son object in the list and clicking on the Ok button.

98

(29) Click on Add Value under the Edit heading again.
(30) Add the commURIObject object class to the person by selecting the

commURIObject object in the list and clicking on the Ok button.

99

(31) If you need to add additional institutional specific objects to your newly
created person, you can do so now.

(32) You should now be able to see the object classes that you have added
to the newly created person.

100

(33) Uncheck the Show only Attributes with Values checkbox in the user
Property Editor window. This will allow you to view all of the attributes that
do not have values yet.

101

(34) In the attribute table, scroll down to the EduPerson attributes.

(35) Enter values for the attributes by clicking on the attribute and clicking
on the Add Value button.

102

(36) In the attribute table, scroll down to the commURIObject attribute.

(37) Enter values for the attribute by clicking on the attribute and clicking
on the Add Value button.

103

(38) Add values to any institution-specific attributes using the same method
outlined in the previous steps.

(39) Click on the Ok button to close the Property Editor window.
(40) Click on the Ok button to close the Create New User window which

will create the new user.
(41) Repeat this process to create additional users.

9.5 Populating an H.350 Directory with Sun ONE (iPlanet)
Directory Server

9.5.1 Notes

None.

9.5.2 Requirements

• A running Sun ONE Directory Server on Solaris

• A running Sun ONE Administration Server on Solaris

• A version of the Sun ONE Administration Console on Solaris

• You should know the values for the following :

– The Installation Directory for the Sun ONE Directory Server

– The Directory Manager Distinguished Name

– The Directory Manager Password

– The Domain Name of the server

– The port number on which the Directory Server is running

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories.

9.5.3 Components

• Directory Server

– This is the actual LDAP directory server.

• Administration Server

– This is a common front-end to access the all iPlanet servers including
the iPlanet Directory server.

• Administration Console

– This is a common user interface which uses the administration server
to communicate with the directory server.

104

http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.georgetown.edu/giia/internet2/ldap-recipe/

9.5.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value
Sun ONE Directory Server Installation Directory <ldap dir>

Directory Manager Distinguished Name <manager dn>
Directory Manager Password <manager pw>

Fully Qualified Domain Name of the Server <ldap dns>
Sun ONE Directory Server Port Number <ldap port>

9.5.5 Instructions

(1) Run the following command from your Sun ONE Directory Server Installa-
tion Directory (<ldap dir>).

./startconsole

(2) You should now see the iPlanet Console Login window.

(3) In the User ID field, enter the Directory Manager Distinguished Name
(<manager dn>).

(4) In the Password field, enter the Directory Manager Password (<man-
ager pw>).

105

(5) In the Administration URL field, enter in the URL for the directory
server including the port number (http://<ldap dns>:<ldap port>).

(6) Click OK.
(7) You should now see the iPlanet Console.

(8) On the left-hand side of the iPlanet Console Desktop, you should see a
Java tree structure containing the name of your directory server and directly
beneath it is the distinguished name of your server (<ldap dns>).

106

(9) Click on the file handles in the tree to open them until you reach the
Directory Server node.

(10) Click on the Directory Server node.

107

(11) You should now see some basic property information about your direc-
tory server on the right-hand side of the iPlanet Console Desktop.

(12) Click on the Open button contained in the property information..
(13) You should now see your directory server open in a new iPlanet Direc-

tory Server window.

108

(14) Click on the Configuration tab in the iPlanet Directory Server window.

109

(15) Click on the Schema node in the Java tree structure.

(16) Click on the Attributes tab on the right-hand side of the iPlanet Direc-
tory Server Desktop.

• Using the iPlanet Directory Server to create new objects, you must create
the attributes, create the object, then add the attributes to the objects.

110

(17) Use the Create... button to add any additional attributes that your
institution may need.

(18) Click on the Object Classes tab on the right-hand side of the iPlanet
Directory Server Desktop.

• Using the iPlanet Directory Server to create new objects, you must create
the attributes, create the object, then add the attributes to the objects.

111

(19) Use the Create... button to add any additional object classes that your
institution may need.

(20) Click on the Directory tab at the top of the iPlanet Directory Server
Desktop.

112

(21) Open your directory data to reveal the organizational units already in
place.

113

(22) Right-click on your directory root.

114

(23) Navigate accordingly to create a new Organizational Unit.
(24) Enter all necessary information into the form to create a new Organi-

zational Unit for your commObjects.

115

(25) Click the OK button.
(26) You should now be able to see the new Organizational Unit under your

directory root.

116

(27) Right-click on the Organizational Unit that you just created.

(28) Navigate accordingly to create a new object by clicking on the Other
menu item. This will allow you to create a new commObject object.

(29) You should now see the New Object window.

117

(30) Scroll down in the list to choose ’commObject’.

118

(31) Click the OK button.
(32) Click on the ’Object class’ attribute.

119

(33) Click on the ’Add Value’ button. You should now see the ’Add Object
Class’ window.

120

(34) Add Auxiliary classes (in this case, h323Identity) to match your end-
point by choosing them in the list and clicking on the ’OK’ button.

121

(35) You should now see the updated ’Object class’ attribute in the Property
Editor screen.

122

(36) Continue this process until you have added all of the auxiliary classes
that you need for this endpoint.

(37) Click on the ’communiqueid’ attribute and alter the current value to
provide a unique identification for this endpoint.

123

(38) Uncheck ’Show only Attributes with Values’ checkbox to add values to
other attributes.

124

(39) Click the OK button to create the commObject.
(39) You should now be able to see your newly created commObject under

the Directory tab.

125

10 Installing and Configuring your Directory Server:
OpenLDAP Directory Server

10.1 Installing the OpenLDAP Directory Server

10.1.1 Notes

Detailed documents can always be found at the OpenLDAP website. These
instructions work successfully on Redhat 8.0; your platform may differ.

10.1.2 Requirements

• UNIX (or UNIX-like system)

• A C Development Environment

• POSIX REGEX routines

• Berkeley Networking (socket/select) routines

• Berkeley Database 4.1 from Sleepycat Software

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories.

126

10.1.3 Components

• Directory Server

– This is the actual LDAP directory server.

10.1.4 Installation Decisions

There are numerous decisions one can make prior to installing the OpenLDAP
server. Each installation decision is carefully defined on the OpenLDAP docu-
mentation webpage as well as in the configure script.

10.1.5 Installation

(1) Download the latest Berkeley Database 4.1 from Sleepycat Software in tar
and gziped format.

(2) Expand the installation file.

Example: tar xvfz db-4.1.25.tar.gz

(3) If you are not already the root user, please switch to the root user.
(4) Change your current working directory to be the newly created directory.

Example: cd db-4.1.25

(5) Change your current working directory to the UNIX build directory.

cd build unix

(6) View and choose the configuration options for the Berkeley Database
application.

../dist/configure –help

(7) Run the configuration utility for the Berkeley Database application spec-
ifying the configuration options you wish to include. It is preferable to at least
include the ’–prefix=/usr/local’ option as OpenLDAP will find the library files
by default without any specification.

../dist/configure –prefix=/usr/local

(8) Build the Berkeley Database application.

make

(9) Install the Berkeley Database application.

make install

(10) Download the latest OpenLDAP Directory Server file for Linux.
(11) Expand the installation file.

127

Example: tar xvfz openldap-2.1.21

(12) If you are not already the root user, please switch to the root user.
(13) Change your current working directory to be the newly created direc-

tory.

Example: cd openldap-2.1.21

(14) View and choose the configuration options for the OpenLDAP applica-
tion.

./configure –help

(15) Run the configuration utility for the OpenLDAP application specifying
the configuration options you wish to include.

Example: env CC=gcc ./configure –enable-ldbm \ –with-cyrus-
sasl –with-tls

(16) Build the dependencies for the OpenLDAP application.

make depend

(17) Build the OpenLDAP application.

make

(18) If the system is not built, review and alter your configuration settings
and rebuild.

(19) Test the OpenLDAP application.

make test

(20) If the tests fail, review and alter your configuration settings and rebuild.
(21) Install the OpenLDAP application.

make install

(22) OpenLDAP should now be installed.

10.2 Configuring an Enterprise Directory with OpenL-
DAP Directory Server

10.2.1 Notes

None.

128

10.2.2 Requirements

• A running OpenLDAP Directory Server on Linux

• Knowledge of the following values :

– The Configuration Directory for the OpenLDAP Directory Server

– The Schema Directory for the OpenLDAP Directory Server

– The Executable Directory for the OpenLDAP Directory Server

– The Domain Name of the server

• Familiarity with A Recipe for Configuring and Operating LDAP Directo-
ries

10.2.3 Components

• Directory Server

– This is the actual LDAP directory server.

• EduPerson Schema File

– This is the file that contains the schema changes necessary to support
the EduPerson object.

• commURI Schema File

– This is the file that contains the schema changes necessary to support
the commURI object.

10.2.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
OpenLDAP Configuration
Directory

<config dir> /usr/local/etc/openldap/

OpenLDAP Schema Di-
rectory

<schema dir> /usr/local/etc/openldap/schema/

OpenLDAP Executable
Directory

<exe dir> /usr/local/libexc/

Enterprise slapd.conf File <slapd file> /usr/local/etc/openldap/slapd.conf.enterprise
Fully Qualified Domain
Name of the OpenLDAP
Server

<ldap dns> enterprise.uab.edu

OpenLDAP Directory
Server Port Number

<ldap port> 389

129

10.2.5 Instructions

(1) Download the latest EduPerson Schema file from here and save it in the
schema directory, <schema dir>.

(2) Download the latest commURI Schema file from here and save it in the
schema directory, <schema dir>.

(3) Create a copy (<slapd file>) of the <config dir>/slapd.conf file.

cp <config dir>/slapd.conf <config dir>/slapd.conf.enterprise

(4) Open <slapd file> with a text editor.
(5) Add an entry for the inetOrgPerson Schema file as an include directive

in the global section of the file.

include /usr/local/etc/openldap/schema/inetorgperson.schema

(6) Add an entry for the EduPerson Schema file as an include directive in
the global section of the file.

include /usr/local/etc/openldap/schema/eduperson.schema

(7) Add an entry for the commURI Schema file as an include directive in
the global section of the file.

include /usr/local/etc/openldap/schema/commURI.schema

(8) Change the pidfile directive to a unique file among other slapd instances.

pidfile /usr/local/var/slapd.pid.enterprise

(9) Change the argsfile directive to a unique file among other slapd instances.

argsfile /usr/local/var/slapd.args.enterprise

(10) Change the suffix directive to reflect the base DN of your directory.

suffix ”dc=enterprise,dc=uab,dc=edu”

(11) Change the rootdn of the directory to reflect the DN of the directory
administrator.

rootdn ”cn=admin,dc=enterprise,dc=uab,dc=edu”

(12) Use the slappasswd command line application to create a password
for the rootpw directive in the file. You should generally not use cleartext
passwords.

rootpw {SSHA}kDKWEwSNLVvckbOEH+TBRvEqOQtkUMJy

(13) Change the directory directive to a unique directory among other slapd
instances. This directory must exist prior to running slapd.

130

http://metric.it.uab.edu/vnet/documents/ldif/eduperson.schema
http://metric.it.uab.edu/vnet/documents/ldif/commURI.schema

directory /usr/local/var/openldap-data-enterprise

(14) Set indexing attributes.

index default pres,eq index uid index objectClass eq

(15) Make other optional changes. * Add support for SASL * Add support
for TLS/SSL * Add logging support

(16) Start slapd with the following arguments.

<exe dir>/slapd -f <slapd file> -h ”ldap://<ldap dns>:<ldap port>/”

10.3 Configuring a commObject Directory with OpenL-
DAP Directory Server

10.3.1 Notes

None.

10.3.2 Requirements

• A running OpenLDAP Directory Server on Linux

• Knowledge of the following values :

– The Configuration Directory for the OpenLDAP Directory Server

– The Schema Directory for the OpenLDAP Directory Server

– The Executable Directory for the OpenLDAP Directory Server

– The Domain Name of the server

• Familiarity with A Recipe for Configuring and Operating LDAP Directo-
ries

10.3.3 Components

• Directory Server

– This is the actual LDAP directory server.

• commObject Schema File

– This is the file that contains the schema changes necessary to support
the commObject object.

• genericIdentity Schema File

– This is the file that contains the schema changes necessary to support
the genericIdentity object.

131

• h235Identity Schema File

– This is the file that contains the schema changes necessary to support
the h235Identity object.

• h320Identity Schema File

– This is the file that contains the schema changes necessary to support
the h320Identity object.

• h323Identity Schema File

– This is the file that contains the schema changes necessary to support
the h323Identity object.

• sipIdentity Schema File

– This is the file that contains the schema changes necessary to support
the sipIdentity object.

10.3.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
OpenLDAP Configuration
Directory

<config dir> /usr/local/etc/openldap/

OpenLDAP Schema Di-
rectory

<schema dir> /usr/local/etc/openldap/schema/

OpenLDAP Executable
Directory

<exe dir> /usr/local/libexc/

commObject slapd.conf
File

<slapd file> /usr/local/etc/openldap/slapd.conf.commobject

Fully Qualified Domain
Name of the OpenLDAP
Server

<ldap dns> commobject.uab.edu

OpenLDAP Directory
Server Port Number

<ldap port> 389

10.3.5 Instructions

(1) Download the latest commObject Schema file from here and save it in the
schema directory, <schema dir>.

(2) Download the latest genericIdentity Schema file from here and save it in
the schema directory, <schema dir>.

132

http://metric.it.uab.edu/vnet/documents/ldif/commObject.schema
http://metric.it.uab.edu/vnet/documents/ldif/genericIdentity.schema

(3) Download the latest h235Identity Schema file from here and save it in
the schema directory, <schema dir>.

(4) Download the latest h320Identity Schema file from here and save it in
the schema directory, <schema dir>.

(5) Download the latest h323Identity Schema file from here and save it in
the schema directory, <schema dir>.

(6) Download the latest sipIdentity Schema file from here and save it in the
schema directory, <schema dir>.

(7) Create a copy (<slapd file>) of the <config dir>/slapd.conf file.

cp <config dir>/slapd.conf <config dir>/slapd.conf.commobject

(8) Open <slapd file> with a text editor.
(9) Add an entry for the commObject Schema file as an include directive in

the global section of the file.

include /usr/local/etc/openldap/schema/commObject.schema

(10) Add an entry for the genericIdentity Schema file as an include directive
in the global section of the file.

include /usr/local/etc/openldap/schema/genericIdentity.schema

(11) Add an entry for the h235Identity Schema file as an include directive
in the global section of the file.

include /usr/local/etc/openldap/schema/h235Identity.schema

(12) Add an entry for the h320Identity Schema file as an include directive
in the global section of the file.

include /usr/local/etc/openldap/schema/h320Identity.schema

(13) Add an entry for the h323Identity Schema file as an include directive
in the global section of the file.

include /usr/local/etc/openldap/schema/h323Identity.schema

(14) Add an entry for the sipIdentity Schema file as an include directive in
the global section of the file.

include /usr/local/etc/openldap/schema/sipIdentity.schema

(15) Change the pidfile directive to a unique file among other slapd instances.

pidfile /usr/local/var/slapd.pid.commobject

(16) Change the argsfile directive to a unique file among other slapd in-
stances.

133

http://metric.it.uab.edu/vnet/documents/ldif/h235Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/h320Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/h323Identity.schema
http://metric.it.uab.edu/vnet/documents/ldif/sipIdentity.schema

argsfile /usr/local/var/slapd.args.commobject

(17) Change the suffix directive to reflect the base DN of your directory.

suffix ”dc=commobject,dc=uab,dc=edu”

(18) Change the rootdn of the directory to reflect the DN of the directory
administrator.

rootdn ”cn=admin,dc=commobject,dc=uab,dc=edu”

(19) Use the slappasswd command line application to create a password
for the rootpw directive in the file. You should generally not use cleartext
passwords.

rootpw {SSHA}kDKWEwSNLVvckbOEH+TBRvEqOQtkUMJy

(20) Change the directory directive to a unique directory among other slapd
instances. This directory must exist prior to running slapd.

directory /usr/local/var/openldap-data-commobject

(21) Set indexing attributes.

index default pres,eq index commUniqueId index objectClass eq

(22) Make other optional changes.

• Add support for SASL

• Add support for TLS/SSL

• Add logging support

(23) Start slapd with the following arguments.

<exe dir>/slapd -f <slapd file> -h ”ldap://<ldap dns>:<ldap port>/”

10.4 Populating an Enterprise Directory with OpenLDAP
Directory Server

10.4.1 Notes

OpenLDAP uses LDIF files to add entries to the Directory Server. Therefore,
to populate the directory, you must first create an LDIF file with entries to add
to the server.

10.4.2 Requirements

• A running OpenLDAP Directory Server on Linux

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories.

134

10.4.3 Components

• Directory Server

– This is the actual LDAP directory server.

10.4.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
The fully qualified domain
name of the server on
which OpenLDAP is run-
ning

<ldap host> enterprise.uab.edu

The port on which the
OpenLDAP Directory
Server is running

<ldap port> 389

The Distinguished Name
for the root user as defined
in <slapd file>

<root dn> cn=admin,dc=enterprise,dc=uab,dc=edu

The password for the
root user as defined in
<slapd file>

<root pw> secret

The fully qualified path to
the LDIF file that you are
creating

<ldif file> /tmp/enterprise.ldif

The slapd.conf file which
defines your Enterprise di-
rectory

<slapd file> /usr/local/etc/openldap/slapd.conf.enterprise

10.4.5 Instructions

(1) Create and open a file (<ldif file>) with a text editor.
(2) Create your base DN in the text file.

Base DN
#
dn: dc=enterprise,dc=uab,dc=edu
objectClass: top
objectClass: dcObject
objectClass: domain
dc: enterprise

(3) Create an organizational unit to contain users by appending to the file.

135

People OU
#
dn: ou=people,dc=enterprise,dc=uab,dc=edu
ou: people
objectClass: top
objectClass: organizationalUnit

(4) Create the user entries by appending to the file.

John Doe’s Entry
#
dn: uid=jdoe,ou=people,dc=enterprise,dc=uab,dc=edu
cn: jdoe
cn: John Doe
givenname: John
sn: Doe
mail: jdoe@nowhere.com
userPassword: secret
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
objectClass: eduperson
telephonenumber: (555) 555-5555
facsimiletelephonenumber: (555) 555-5555
uid: jdoe

(5) Add the entries to the LDAP server with any of the following two meth-
ods.

With slapd running:

ldapadd -x -h <ldap host> -p <ldap port> -D <root dn>
\ -w <root pw> -f <ldif file>

With slapd not running:

slapadd -f <slapd file> -l <ldif file>

10.5 Populating an H.350 Directory with OpenLDAP Di-
rectory Server

10.5.1 Notes

OpenLDAP uses LDIF files to add entries to the Directory Server. Therefore,
to populate the directory, you must first create an LDIF file with entries to add
to the server.

136

10.5.2 Requirements

• A running OpenLDAP Directory Server on Linux

• You should be familiar with A Recipe for Configuring and Operating
LDAP Directories

10.5.3 Components

• Directory Server

– This is the actual LDAP directory server.

10.5.4 Legend

Because of the differences in individual needs, certain parameters of the installed
Sun ONE Directory Server may be quite different from the typical install. It is
for this purpose that the following legend was created.

Parameter Value Example
The fully qualified domain
name of the server on
which OpenLDAP is run-
ning

<ldap host> commobject.uab.edu

The port on which the
OpenLDAP Directory
Server is running

<ldap port> 389

The Distinguished Name
for the root user as defined
in <slapd file>

<root dn> cn=admin,dc=commobject,dc=uab,dc=edu

The password for the
root user as defined in
<slapd file>

<root pw> secret

The fully qualified path to
the LDIF file that you are
creating

<ldif file> /tmp/commobject.ldif

The slapd.conf file which
defines your commObject
directory

<slapd file> /usr/local/etc/openldap/slapd.conf.commobject

10.5.5 Instructions

(1) Create and open a file with a text editor.
(2) Create your base DN in the text file.

Base DN
#

137

dn: dc=commobject,dc=uab,dc=edu
objectClass: top
objectClass: dcObject
objectClass: domain
dc: commobject

(3) Create an organizational unit to contain commObjects by appending to
the file.

commObject OU
#
dn: ou=commObjects,dc=commobject,dc=uab,dc=edu
ou: commObjects
objectClass: top
objectClass: organizationalUnit

(4) Create the commObject entries by appending to the file.

John’s commObject Entry
#
dn: commUniqueId=uniqueid 0001,ou=commObjects,dc=commobject,dc=uab,dc=edu
commUniqueId: uniqueid 0001
objectClass: top
objectClass: commObject
objectClass: h323Identity
objectClass: h235Identity

(5) Add the entries to the LDAP server with any of the following two meth-
ods.

With slapd running:

ldapadd -x -h <ldap host> -p <ldap port> -D <root dn>
\ -w <root pw> -f <ldif file>

With slapd not running:

slapadd -f <slapd file> -l <ldif file>

138

11 Installing and Configuring your Directory Server:
Microsoft Active Directory

11.1 Windows 2000 Server

11.1.1 Installing the Active Directory Server

11.1.2 Configuring an Enterprise Directory with Active Directory
Server

11.1.3 Configuring a commObject Directory with Active Directory
Server

11.1.4 Populating an Enterprise Directory with Active Directory
Server

11.1.5 Populating an H.350 Directory with Active Directory Server

11.2 Windows 2003 Server

11.2.1 Installing the Active Directory Server

11.2.2 Configuring an Enterprise Directory with Active Directory
Server

11.2.3 Configuring a commObject Directory with Active Directory
Server

11.2.4 Populating an Enterprise Directory with Active Directory
Server

11.2.5 Populating an H.350 Directory with Active Directory Server

12 Recommended Policies and Procedures for
Directory Service Administration

12.1 Account administration

12.2 Protecting the data on the server : Using of ACIs

12.3 Recommended Attribute Indexing

Attribute indexing is an implementation-specific activity. Note that non-indexed
attributes can result in search times sufficiently long as to render some appli-
cations unusable. Notably, user and alias lookup should be fast. The following
Indexing Profile describes an indexing configuration for commObject directories
that will be optimized for use in directory of directories applications. Use of
this profile is optional.

commURI: no recommendation.

139

commUniqueId: equality

commOwner: presence

commPrivate: presence

h323IdentityGKDomain: no recommendation

h323Identityh323-ID: equality

h323IdentitydialedDigits: equality

h323Identityemail-ID: equality

h323IdentityURL-ID: equality

h323IdentitytransportID: equality

h323IdentitypartyNumber: equality

h323IdentitymobileUIM: equality

h323IdentityEndpointType: equality

h323IdentityServiceLevel: equality

h235IdentityEndpointID: no recommendation

h235IdentityPassword: equality

h320IdentityCC: presence, equality, sub

h320IdentityNDC: presence, equality, sub

h320IdentitySN: presence, equality, sub

h320IdentityExtension: presence, equality, sub

h320IdentityServiceLevel: equality

SIPIdentitySIPURI: equality

SIPIdentityRegistrarAddress: no recommendation

SIPIdentityProxyAddress: no recommendation

SIPIdentityAddress: equality

SIPIdentityUserName: equality

SIPIdentityPassword: no recommendation

SIPIdentityServiceLevel: equality

genericIdentityProtocolIdentifier: equality

genericIdentityMessage: equality

140

12.4 Securing your server from attacks

13 Registering your Directory Services

13.1 Registering your Directories for GlobalWhite Pages
Lookup

13.2 LDAP Crawling and TIO files

14 Using the ViDeNet (Commons? ”A”?) Pub-
lic Directory Service

15 Installing and Configuring Call Servers

15.1 H.323 Gatekeeper Configuration

15.1.1 Installing and Configuring RADVISION ECS

15.1.2 Using ViDeNet GDS

15.2 SIP Proxy Configuration

15.2.1 Installing and Configuring ?????

16 Using Prototype EndPoint (Client) Software

16.1 Installing and Configuring RADVISION Prototype
Client

16.2 Installing CGU UserAgent

Obtain the CGU UserAgent at http://ncl.cgu.edu/sipclient/.

141

http://ncl.cgu.edu/sipclient/

16.3 Using RADVISION Prototype

16.4 Using CGU UserAgent Prototype

17 Addressing and Directory Issues for protocol
gateways

17.1 Gateways to non-standard protocols

18 Using H.350 for Automated Client Configu-
ration

19 Using H.350 for White Pages Lookup

Figure 19.1 shows how an LDAP-enabled endpoint can search a directory to
find a user, obtain that user’s commObject information, and dial the user’s
endpoint. In this scenario the endpoint could be pre-configured to search a
particular enterprise directory, or it could be preconfigured to search a directory
portal (or “Directory of Directories”) that it searches many directories. Results
of the search can be presented as choices through a user interface. Alternatively,
the search criteria could be entered into a web form with results returned and
displayed via web page, thus enabling clickable dialing.

The example below illustrates an endpoint doing direct LDAP lookup; it is
also possible that a call server could perform lookups on behalf of the endpoint
and pass the information to the endpoint through an alternate communication
path, thus centralizing some aspects of white page access.

Figure 11: 18.1

142

20 Using H.350 as an Authoritative Data Source
for Call Servers

20.1 Directory Enabled Registration

Figure 20.1 shows how a call server can access a commObject directory to re-
trieve endpoint information, thus eliminating the need for the call server to have
a proprietary internal endpoint database. The call server is always accessing au-
thoritative and up to date information.

Figure 12: 19.1

21 Using H.350 for User Authentication from
Authoritative Sources

Figure 21.1 illustrates how an environment can be created in which a user uses
an identity authenticated by the enterprise to access any of several endpoint
identities. This scenario has several key features that are desirable for large
scale deployments.

The endpoint is automatically configured using information from the di-
rectory. This eliminates user error in the configuration process and simplifies
deployment.

The user is needs a single sign on credential (typically their enterprise user
ID and password). Endpoints can (and often should) have different credentials,
but the user does not need to know them, because they are loaded directly into
the endpoint from the directory. Because the endpoint credentials are loaded
automatically, it is possible that these credentials could be frequently refreshed.
For example, a management tool could generate random credentials for each
endpoint and store them in the commObject directory each night. This creates

143

a highly secure environment in which credentials can be very strong, and even
if compromised are aged-out and recreated in a short period of time.

This scenario supports the use of ID/password or certificate based endpoint
credentials. Certificates have traditionally been found to be difficult to deploy
for a number of reasons. This scenario solves some important aspects of the
certificate management problem and opens the possibility that certificates can
be managed by and on behalf of a central certificate management system, rather
than on behalf of users, thus shielding users from the complexity of PKI while
gaining its security advantages.

Figure 13: 20.1

In this scenario, the enterprise authentication steps represent a user au-
thenticating to an existing authentication server already deployed for general
purpose (e.g. email, web, file sharing) single sign on authentication system.
Once authenticated, the user can bind to the LDAP server directly and retrieve
all configuration information for the selected endpoint, which includes configu-
ration data and authentication credentials for the endpoint. Finally, using these
credentials, the endpoint can authenticate to the call server using whichever
authentication scheme is in place (for example, H.235 Annex D or E). Secure
LDAP (transport layer security available in LDAP V3) should be used to ensure
privacy of these transactions.

Appendix.

144

22 Example Source Code

22.1 White Pages Lookup

22.1.1 Source Code

As an aid to software developers, some example source code is provided below.
The same code can be downloaded here <INSERT LINK TO SOURCE CODE
FILE> In this example, the Enterprise and commObject directories happen to
be hosted on a single ldap server. As explained in the chapters on Architectural
Decisions for Implementors, this configuration is just one of several possible ar-
chitectures. Where an authoritative Enterprise LDAP Directory exists it would
be likely that the commObject directory would be hosted on a separate directory
server.

The scenario here is a white pages lookup - ie, search for someone by name in
a person directory; retrieve their commURI’s, and present the public information
from the eduPerson and commObject object classes. Note that this code makes
use of anonymous bind, as would be typical for a white pages lookup.

/*———————————————————————-
ldap example.c
(1) To Compile on SUN Sparc Station using the SUN

C
compiler and the openldap libraries (2.1.17 ver-

sion).
cc -I/opt/local/openldap/include ldap sample2.c

-o ldap sample2 -L
/opt/local/openldap/lib -lldap -llber

(2) To Compile on RedHat Linux with openldap li-
braries

cc ./ldap sample.c -o ldap sample -lldap -llber
*/

#include <ldap.h>
#include <stdio.h>
/* NAME OF THE HOST WITH THE LDAP SERVICE

:
Change this to your server before compiling

*/
#define DEFAULT HOST ”mazurka.dom.unc.edu”
/* EXAMPLE SEARCH BASE

Change this before compiling
*/
#define DEFAULT BASE ”uid=tmiller,ou=people,dc=vide,dc=net”
#define PWD ”NULL”
#define DEFAULT FILTER ”(objectclass=*)”

145

void print entries with values (LDAP *ld, LDAPMes-
sage *result);

int url ldap search (LDAPURLDesc *);

int main ()
{

LDAP *ld;
LDAPMessage *result, *e;
LDAPURLDesc *ludp;
char **vals;
char *attrs[2], *url;
int i, id, err;
int msgid, nentries, rc;
int PORT;
char *SEARCHBASE;
char *HOST;
/* get handle to an LDAP connection */
if ((ld = ldap init(DEFAULT HOST, LDAP PORT

)) == NULL)
{

perror(”ldap init”);
return (1);

}
/* authenticate to the directory anonymously */
if (ldap simple bind s (ld, NULL, PWD) != LDAP SUCCESS)
{

ldap perror (ld, ”ldap simple bind s”);
return (1);

}
/* Retrieve commURI */
attrs[0] = ”commuri”;
attrs[1] = NULL;
if (ldap search s(ld, DEFAULT BASE,
LDAP SCOPE BASE, DEFAULT FILTER, attrs, 0,

&result) != LDAP SUCCESS)
{

ldap perror (ld, ”ldap search s”);
return (1);

}
/* print out the values */
if ((e = ldap first entry(ld, result)) != NULL)
{

if ((vals = ldap get values(ld, e, ”commuri”)) !=
NULL)

{
for (i = 0; vals[i] != NULL; i++)

146

{
url = vals[i];
printf (”%s\n”, vals[i]);
/* Let’s parse the URL */
/* So we can search the specified server */

if ((err = ldap url parse(url, &ludp)) != 0)
{

fprintf(stderr, ”ldap url parse: error
%d\n”, err);

}
else
{

printf(”\t host: ”);
if (ludp->lud host == NULL)
{

printf(”DEFAULT\n”);
HOST = ”localhost”;

}
else
{

printf(”<%s>\n”, ludp->lud host);
HOST = ludp->lud host;

}
printf(”\t port: ”);
if (ludp->lud port == 0)
{

printf(”DEFAULT\n”);
PORT = LDAP PORT;

}
else
{

printf(”%d\n”, ludp->lud port);
PORT = ludp->lud port;

}
SEARCHBASE = ludp->lud dn;
printf(”\t dn: <%s>\n”, ludp->lud dn);
printf(”\t attrs:”);
if (ludp->lud attrs == NULL)
{

printf(” ALL”);
}
else
{

for (i = 0; ludp->lud attrs[i] != NULL;
++i)

{

147

printf(” <%s>”, ludp->lud attrs[i]);
}

}
printf(”\n\t scope: %s\n”, ludp->lud scope

== LDAP SCOPE ONELEVEL ?
”ONE”: ludp->lud scope == LDAP SCOPE BASE

? ”BASE” :
ludp->lud scope == LDAP SCOPE SUBTREE

? ”SUB” : ”**invalid**”);
printf(”\tfilter: <%s>\n\n”, ludp->lud filter

);
/* Let’s now call the function that will

follow the LDAP URL and retrieve the information
*/
rc = url ldap search (ludp);
if (rc == -1)
{

printf (” Could not Initialize our
connection to the LDAP server: %s\n”,HOST);

}
else if (rc == -2)
{

printf (”Failed to bind to the LDAP
server: %s\n”, HOST);

}
else if (rc == -3)
{

printf (”Failed to find any information
for the following filter: %s\n”,ludp->lud filter);

}
else if (rc == -4)
{

printf (”We ran into an error in the
ldap result function\n”);

}
ldap free urldesc(ludp);

}
}
ldap value free (vals);

}
}
ldap msgfree(result);
ldap unbind(ld);
return (0);

}

148

/* let’s follow up the URL and get the necessary in-
formation by doing

an LDAP search */
int url ldap search (LDAPURLDesc *ludp)
{

int msgid, nentries, rc;
LDAP *ld;
char *HOST;
int PORT;
LDAPMessage *result;
/* We need to first initialize the connection to the

LDAP server */
if (ludp->lud host == NULL)
{

HOST = ”localhost”;
}
else
{

HOST = ludp->lud host;
}
if (ludp->lud port == 0)
{

PORT = LDAP PORT;
}
else
{

PORT = ludp->lud port;
}
if ((ld = ldap init (HOST, PORT)) == NULL)
{

perror (”ldap init”);
return (-1);

}
/* Now Let’s Bind to the server anonymously in this

case */
/* if (ldap bind(ld, NULL, NULL, LDAP AUTH SIMPLE)

!= LDAP SUCCESS) */
if (ldap simple bind s (ld, NULL, NULL) != LDAP SUCCESS)
{

ldap perror (ld ,”ldap bind”);
return (-2);

}
/* Now Let’s call the ldap search function with the

specific information */
/* we got from the previous search */

149

if ((msgid = ldap search(ld, ludp->lud dn, ludp-
>lud scope,

ludp->lud filter, NULL, 0)) == -1)
{

ldap perror(ld, ”ldap search”);
return (-3);

}
/* Let’s now list the information we got from the

above search */
nentries = 0;
while ((rc = ldap result(ld, msgid, 0, NULL, &re-

sult)) == LDAP RES SEARCH ENTRY)
{

nentries++;
print entries with values(ld, result);
ldap msgfree(result);

}
if (rc == -1)
{

ldap perror(ld, ”ldap result”);
return (-4);

}
printf(”Found %d entries at %s\n\n”,nentries, ludp-

>lud dn);
ldap unbind(ld);
return(0);

}

void print entries with values (LDAP *ld, LDAPMes-
sage *result) {

LDAPMessage *e;
BerElement *ber;
char *dn, *attr;
char **vals;
int i;
for (e = ldap first entry(ld, result); e != NULL;
e = ldap next entry(ld, e))
{

if ((dn = ldap get dn(ld, e)) != NULL)
{

printf(”dn: %s\n”, dn);
ldap memfree(dn);

}
for (attr = ldap first attribute(ld, e, &ber);
attr != NULL;
attr = ldap next attribute(ld, e, ber))

150

{
if ((vals = ldap get values(ld, e, attr)) !=

NULL)
{

for (i = 0; vals[i] != NULL; i++)
{

printf(”%s: %s\n”, attr, vals[i]);
}
ldap value free(vals);

}
ldap memfree (attr);

}
printf(”\n”);
if (ber != NULL)
{

ber free (ber, 0);
}

}
}

22.1.2 Program Output

The program above has the following output when run successfully:
ldap://mazurka.dom.unc.edu/dc=vide,dc=net??sub?(commUniqueId=30)
host: <mazurka.dom.unc.edu>
port: 389
dn: <dc=vide,dc=net>
attrs: ALL
scope: SUB
filter: <(commUniqueId=30)>
dn: commUniqueId=30,ou=h323identity,dc=vide,dc=net
objectClass: top
objectClass: commObject
objectClass: h323Identity
commUniqueId: 30
h323IdentityEndpointType: Terminal
commOwner: ldap://mazurka.dom.unc.edu/dc=vide,dc=net??sub?(uid=tmiller)
h323IdentityDialedDigits: 00121971297
h323Identityh323Id: Theresa.Miller
Found 1 entries at dc=vide,dc=net
ldap://mazurka.dom.unc.edu/dc=vide,dc=net??sub?(commUniqueId=100000)
host: <mazurka.dom.unc.edu>
port: 389
dn: <dc=vide,dc=net>
attrs: ALL
scope: SUB

151

filter: <(commUniqueId=100000)>
dn: commUniqueId=100000,ou=h323identity,dc=vide,dc=net
objectClass: top
objectClass: commObject
objectClass: h323Identity
objectClass: SIPIdentity
commUniqueId: 100000
commOwner: ldap://mazurka.dom.unc.edu/dc=vide,dc=net??sub?(uid=tmiller)
SIPIdentitySIPURI: TheresaMiller@unc.edu
Found 1 entries at dc=vide,dc=net

23 Glossary

ACI (Access Control Item):

ACL (Access Control List):

BIND:

Call Server: a protocol-specific signaling engine that routes video or voice calls
on the network. In H.323 this entity is a gatekeeper. In SIP, this entity is
a SIP Proxy Server. Note that not all signaling protocols use a call server.

Client: a SIP client is a network device that initiates SIP requests and receives
SIP responses on a network.

CN: Common Name

commObject: An LDAP object class defined in ITU-T H.350 that represents
generic multimedia conferencing endpoints.

commObject Directory:

commURI:

Directory Server:

DN: Distinguished Name

Endpoint: a logical device that provides video and/or voice media encod-
ing/decoding, and signaling functions. Examples include:

1. a group teleconferencing appliance that is located in a conference room

2. an IP telephone.

3. a software program that takes video and voice from a camera and micro-
phone and encodes it and applies signaling using a host computer.

152

Enterprise Directory: A canonical collection of information about users in an
organization. Typically this information is collected from a variety of or-
ganizational units to create a whole. For example, Human Resources may
provide name and address, Telecommunications may provide the telephone
number, Information Technology may provide the email address, etc. For
the purposes of this architecture, it is assumed that an enterprise directory
is accessible via LDAP.

Gatekeeper:

Gateway: A device that translates from one protocol to another. Often gate-
ways translate between the IP network and the public switched voice net-
work to allow integration of the two.

Global Dialing Scheme:

H.323:

h323Identity:

H.350:

Internet2: A consortium led by 200 universities working in partnership with
industry and government to develop and deploy advanced network appli-
cations and technologies, accelerating the creation of tomorrow’s Internet.
See http://www.internet2.edu/.

LDAP: Lightweight Directory Access Protocol as defined in IETF RFC 1777.

LDIF (LDAP Data Interchange Format):

MCU: Multipoint Control Unit. A device capable of mixing audio/video from
multiple endpoints to create a virtual meeting space.

Middleware:

Proxy Server (SIP Proxy): a server that acts as both a client and a server
to make requests on behalf of another user agent. The primary role of a
proxy server is to ensure that a request generated by a UA is passed to
another entity that is closer to the destination user.

RDN: Relative Distinguished Name

Registrar: a registrar is a server that accepts REGISTER requests and places
the information it receives in those requests into the location service for
the domain it handles.

Resource: A non-human entity to which an endpoint is associated. For exam-
ple, and endpoint may be associated with a conference room, classroom,
office, or other physical or virtual location.

153

http://www.internet2.edu/

SIP: Session Initiation Protocol as defined in IETF RFC 3261

SIP URI: a type of Uniform Resource Identifier that identifies a communica-
tion resource in SIP. A SIP URI usually contains a user name and a host
name and is similar in format to an email address.

User Agent (UA): a device that can function as both a user agent client and
server in SIP.

ViDe: The Video Development Initiative. Founded by representatives from
universities and education networks, the Video Development Initiative
(ViDe) promotes the deployment of digital video in research and higher ed-
ucation. Leveraging collective resources and expertise, ViDe advances dig-
ital video deployment through promotion and development of interopera-
ble, standardized, and cost-effective technologies. See http://www.vide.net/.

ViDeNet: ViDeNet is a project of ViDe that consists of a large scale, multi-
institutional test bed of interconnected voice and video over IP networks
in order to explore issues associated with global deployment of those tech-
nologies. See https://videnet.unc.edu/.

VidMid: The Video Middleware Working Group. VidMid is a joint working
group sponsored by Internet2 and ViDe. See http://middleware.internet2.edu/video.

White Pages: An application that allows end users to look up the address of
another user. This may be web-based or use some other user interface

24 Resources

24.1 H.323 Resources

1. ViDe VideoConferencing Cookbook: Excellent introduction to videocon-
ferencing, written especially for the higher education and K-12 community

2. Paul Jones’ H.323 Site at Packetizer.com: Good source for current drafts
of H.323 Recommendations and lots of other good information; (Paul is
ITU-T Study Group 16 H.323 Rapporteur)

3. OpenH323 Project: Open source implementation of the H.323 protocol

4. h.323 Forum: An industry forum sponsored by sponsored by the Inter-
national Multimedia Telecommunications Consortium (IMTC). Presenta-
tions, Whitepapers and certification information

5. International Engineering Consortium tutorial on H.323: Explains H.323
call flows with an emphasis on gateways and gatekeepers.

6. Wainhouse Whitepapers on rich media communication: “Business case”
type approach to evaluating multimedia services

154

http://www.vide.net/
https://videnet.unc.edu/
http://middleware.internet2.edu/video
http://www.vide.net/cookbook/
http://www.packetizer.com/iptel/h323/
http://www.openh323.org/
http://www.h323forum.org/
http://www.iec.org/online/tutorials/h323/
http://www.wainhouse.com/whitepapers/index.html

7. Real Time Protocol (RTP): IETF RFC 1889

8. ITU-T Recommendation H.323 (2000), Packet-based multimedia commu-
nications systems.

9. ITU-T Recommendation H.235 (2000), Security and encryption for H-
Series (H.323 and other H.245-based) multimedia terminals.

10. ITU-T Recommendation H.225.0 (2000), Call signaling protocols and me-
dia stream packetization for packet-based multimedia communications sys-
tems.

11. ITU-T Recommendation H.320 (1999), Narrow-band visual telephone sys-
tems and terminal equipment.

24.2 SIP Resources

1. IETF SIP Working Group

2. Columbia University SIP site

3. SIP Center: commercial developers’ site; whitepapers & other information

4. SIP Forum: non-profit organization of SIP developers

5. SIPdev: useful information site for SIP developers

6. IETF RFC 2617 (1999), HTTP Authentication: Basic and Digest Access
Authentication.

7. IETF RFC 3261 (2002), SIP: Session Initiation Protocol.

8. IETF RFC 3263 (2002), Session Initiation Protocol (SIP): Locating SIP
Servers.

24.3 LDAP Resources

1. IETF RFC 3377 Lightweight Directory Access Protocol (v3) Technical
Specification

2. A Recipe for Configuring and Operating LDAP Directories by Michael R.
Gettes.

3. LDAP Roadmap and FAQ

4. IETF RFC 2252 Lightweight Directory Access Protocol (v3): Attribute
Syntax Definitions

5. Gerald Carter (2003), O’Reilly and Associates, ISBN: 1565924916, LDAP
System Administration.

155

http://www.faqs.org/rfcs/rfc1889.html
http://www.ietf.org/html.charters/sip-charter.html
http://www1.cs.columbia.edu/sip/
http://www.sipcenter.com/
http://www.sipforum.org/
http://www.sipdev.com/index.jsp
ftp://ftp.rfc-editor.org/in-notes/rfc3377.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3377.txt
http://www.georgetown.edu/giia/internet2/ldap-recipe/
http://www.kingsmountain.com/ldapRoadmap.shtml
ftp://ftp.rfc-editor.org/in-notes/rfc2252.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2252.txt

6. Timothy A. Howes, PhD, Mark C. Smith, Gordon S. Good, New Rid-
ers Publishing (1999), ISBN: 1578700701, Understanding And Deploying
LDAP Directory Services.

7. Timothy A. Howes, PhD, Mark C. Smith, New Riders Publishing (1997),
ISBN: 1578700000, LDAP Programming Directory-Enabled Applications
with Lightweight Directory Access Protocol.

8. iPlanet Directory Server 5.1 Documentation

9. iPlanet Directory Server Kit 5.1 Tools Reference

10. SunOne Directory Server 5.2 (Multi-Platform) Documentation

24.4 Middleware Resources

24.5 Directory of Directories Resources

1. Description of functional design of the Desire LDAP/TIO-Index server
((Desire was a European project on Development of a European Service
for Information on Research and Education)

156

http://docs.sun.com/db/coll/S1_ipDirectoryServer_51
http://docs.sun.com/db/doc/816-5615-10
http://docs.sun.com/db/coll/S1_DirectoryServer_52
http://www.surfnet.nl/innovatie/surf-ace/search/ldap/d2_ldap_tio/

	Acknowledgements
	Introduction
	Overview
	Intended Audience

	Why commObject?
	Problem Statement
	commObject Design Goals
	H.350 Origins
	The ViDeNet Middleware Test Bed
	White Pages
	Network Management

	Background Information
	Videoconferencing and VoIP
	Overview
	Standards for videoconferencing/VoIP
	ITU-T H.323
	IETF SIP

	Videoconferencing and VoIP Architecture Overview
	Non-standard Videoconferencing Protocols
	Gateways from Standard to Non-Standard videoconferencing systems

	Directory Services
	Overview
	Enterprise Directory Services
	LDAP
	LDAP Directory Server Implementations

	Security for Videoconferencing/Voice over IP
	H.323 Security Standard H.235
	SIP Security Standard
	Does multimedia conferencing really need authentication and authorization?

	Introduction to H.350 Directory Enabled Middleware for Multimedia
	Recommendation H.350
	Design Goals
	Authoritative Data Source for SIP, H.323, H.235, H.320 and proprietary call servers
	Automated Client Configuration
	White Pages Listings and Lookups
	Support for 'clickable' dialing where appropriate.
	Authentication
	Authorization

	Overview Leveraging Enterprise Authentication
	Non-Standard Storage
	Endpoint-only Use of H.350 Storage
	Endpoint and Gatekeeper Use of H.350 Storage
	Enterprise Identity
	Enterprise Authentication using LDAP
	Enterprise Credential Access
	Enterprise Authentication at the Endpoint
	H.323 Authentication Options
	Dynamic Credentials
	SIP and Enterprise Authentication
	Leveraging Enterprise LDAP Authentication
	Additional approaches to integration with enterprise authentication

	Architectural Decisions for Implementers
	Directory Architectural Decisions
	Person Directory and commObject Directory
	Single Directory Server
	Separate Enterprise Directory and commObject Directory Servers
	Coordinating Enterprise and Videoconferencing Directory Services
	Public Directories

	Directory Schema
	Person/Resource Schema
	inetOrgperson
	eduPerson
	Resource Object classes

	H.350 Schema
	Review of H.350 Design Goals
	Extending the H.350 schema with Auxiliary classes
	Attribute Object Identifiers (OID)
	Indexing

	Object Class and Attribute Definitions and Examples
	commURIObject (H.350)
	commURI

	commObject (H.350)
	commUniqueId
	commOwner
	commPrivate

	h323Identity (H.350.1)
	h323IdentityGKDomain
	h323Identityh323-ID
	h323IdentitydialedDigits
	h323Identityemail-ID
	h323IdentityURL-ID
	h323IdentitytransportID
	h323IdentitypartyNumber
	h323IdentitymobileUIM
	h323IdentityEndpointType
	h323IdentityServiceLevel

	h235Identity (H.350.2)
	h235IdentityEndpointID
	h235IdentityPassword

	h320Identity (H.350.3)
	h320IdentityCC
	h320IdentityNDC
	h320IdentitySN
	h320IdentityExtension
	h320IdentityServiceLevel

	sipIdentity (H.350.4)
	SIPIdentitySIPURI
	SIPIdentityRegistrarAddress
	SIPIdentityProxyAddress
	SIPIdentityAddress
	SIPIdentityPassword
	SIPIdentityUserName
	SIPIdentityServiceLevel

	genericIdentity (H.350.5 Directory Services for Non-Standard Protocols)
	genericIdentityProtocolIdentifier
	genericIdentityMessage

	LDIF Files
	About LDIF Files
	LDIF for commObjectURI
	LDIF for commObject
	LDIF for h323Identity
	LDIF for h235Identity
	LDIF for h320Identity
	LDIF for SIPIdentity
	LDIF for genericIdentity
	LDIF for inetOrgperson
	LDIF for eduPerson

	Installing and Configuring your Directory Server: Sun ONE (iPlanet) Directory Server
	Installing the Sun ONE (iPlanet) Directory Server
	Notes
	Requirements
	Components
	Installation Decisions
	Installation

	Configuring an Enterprise Directory with Sun ONE (iPlanet) Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Configuring an H.350 Directory with Sun ONE (iPlanet) Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Populating an Enterprise Directory with Sun ONE (iPlanet) Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Populating an H.350 Directory with Sun ONE (iPlanet) Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Installing and Configuring your Directory Server: OpenLDAP Directory Server
	Installing the OpenLDAP Directory Server
	Notes
	Requirements
	Components
	Installation Decisions
	Installation

	Configuring an Enterprise Directory with OpenLDAP Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Configuring a commObject Directory with OpenLDAP Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Populating an Enterprise Directory with OpenLDAP Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Populating an H.350 Directory with OpenLDAP Directory Server
	Notes
	Requirements
	Components
	Legend
	Instructions

	Installing and Configuring your Directory Server: Microsoft Active Directory
	Windows 2000 Server
	Installing the Active Directory Server
	Configuring an Enterprise Directory with Active Directory Server
	Configuring a commObject Directory with Active Directory Server
	Populating an Enterprise Directory with Active Directory Server
	Populating an H.350 Directory with Active Directory Server

	Windows 2003 Server
	Installing the Active Directory Server
	Configuring an Enterprise Directory with Active Directory Server
	Configuring a commObject Directory with Active Directory Server
	Populating an Enterprise Directory with Active Directory Server
	Populating an H.350 Directory with Active Directory Server

	Recommended Policies and Procedures for Directory Service Administration
	Account administration
	Protecting the data on the server : Using of ACIs
	Recommended Attribute Indexing
	Securing your server from attacks

	Registering your Directory Services
	Registering your Directories for GlobalWhite Pages Lookup
	LDAP Crawling and TIO files

	Using the ViDeNet (Commons? `¨A`¨?) Public Directory Service
	Installing and Configuring Call Servers
	H.323 Gatekeeper Configuration
	Installing and Configuring RADVISION ECS
	Using ViDeNet GDS

	SIP Proxy Configuration
	Installing and Configuring ?????

	Using Prototype EndPoint (Client) Software
	Installing and Configuring RADVISION Prototype Client
	Installing CGU UserAgent
	Using RADVISION Prototype
	Using CGU UserAgent Prototype

	Addressing and Directory Issues for protocol gateways
	Gateways to non-standard protocols

	Using H.350 for Automated Client Configuration
	Using H.350 for White Pages Lookup
	Using H.350 as an Authoritative Data Source for Call Servers
	Directory Enabled Registration

	Using H.350 for User Authentication from Authoritative Sources
	Example Source Code
	White Pages Lookup
	Source Code
	Program Output

	Glossary
	Resources
	H.323 Resources
	SIP Resources
	LDAP Resources
	Middleware Resources
	Directory of Directories Resources

